TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 358, Number 11, November 2006, Pages 4689–4720 S 0002-9947(05)03801-8 Article electronically published on November 1, 2005

INSEPARABLE EXTENSIONS OF ALGEBRAS OVER THE STEENROD ALGEBRA WITH APPLICATIONS TO MODULAR INVARIANT THEORY OF FINITE GROUPS

MARA D. NEUSEL

Dedicated to Clarence W. Wilkerson on the occasion of his 60th birthday

ABSTRACT. We consider purely inseparable extensions $\mathbf{H} \hookrightarrow {}^{\mathcal{P}}\sqrt[q]{\mathbf{H}}$ of unstable Noetherian integral domains over the Steenrod algebra. It turns out that there exists a finite group $G \leq \mathrm{GL}(V)$ and a vector space decomposition $V = \underline{W_0 \oplus W_1 \oplus \cdots \oplus W_e}$ such that $\overline{\mathbf{H}} = (\mathbb{F}[W_0] \otimes \mathbb{F}[W_1]^p \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e})^G$ and $\overline{{}^{\mathcal{P}}\sqrt[q]{\mathbf{H}}} = \mathbb{F}[V]^G$, where $\overline{(-)}$ denotes the integral closure. Moreover, $\overline{\mathbf{H}}$ is Cohen-Macaulay if and only if $\overline{{}^{\mathcal{P}}\sqrt[q]{\mathbf{H}}}$ is Cohen-Macaulay. Furthermore, $\overline{\mathbf{H}}$ is polynomial if and only if $\overline{{}^{\mathcal{P}}\sqrt[q]{\mathbf{H}}}$ is polynomial, and $\overline{{}^{\mathcal{P}}\sqrt[q]{\mathbf{H}}} = \mathbb{F}[h_1,\ldots,h_n]$ if and only if

$$\mathbf{H} = \mathbb{F}[h_1, \dots, h_{n_0}, h^p_{n_0+1}, \dots, h^p_{n_1}, h^{p^2}_{n_1+1}, \dots, h^{p^e}_{n_e}],$$
 where $n_e = n$ and $n_i = \dim_{\mathbb{F}}(W_0 \oplus \dots \oplus W_i)$.

1. Introduction and outline

Let $\mathbb{K} \hookrightarrow \mathbb{L}$ be an algebraic extension of graded fields. Assume that the smaller field, \mathbb{K} , carries an action of the Steenrod algebra \mathcal{P}^* of reduced powers. If the extension $\mathbb{K} \hookrightarrow \mathbb{L}$ is separable, then the action of \mathcal{P}^* can be uniquely extended to \mathbb{L} . In other words, the separable closure of \mathbb{K} as a field over the Steenrod algebra coincides with the separable closure in the category of graded fields; see Proposition 2.2.2 in [3] and Proposition 2.2 in [7].

If the extension, however, is purely inseparable the situation is more delicate: Let $p(X) \in \mathbb{K}[X]$ be the minimal polynomial of $l \in \mathbb{L}$. Since the extension is purely inseparable, we have that

$$p(X) = X^{p^e} - \kappa,$$

so that $l^{p^e} = \kappa$ for some $\kappa \in \mathbb{K}$. Of course, since our fields are graded, we obtain the following condition on the degrees:

(*)
$$\deg(l)p^e = \deg(\kappa).$$

Received by the editors September 18, 2003 and, in revised form, June 22, 2004. 2000 Mathematics Subject Classification. Primary 55S10, 13A50, 13-xx, 55-xx.

Key words and phrases. Inseparable extensions, inseparable closure, Cohen-Macaulay, Δ -relation, Δ_s -relation, derivation, restricted Lie algebra, Steenrod algebra, Dickson algebra, invariant rings of finite groups.

However, the crucial issue is the following. If there were an extension of the \mathcal{P}^* -action to the larger field \mathbb{L} , then

$$\mathscr{P}^{\Delta_i}(\kappa) = 0 \quad \forall i$$

because by equation (*) the element κ is a pth power. Thus, we need to define

$$(\mathscr{P}^i(l))^{p^e} = \mathscr{P}^{ip^e}(\kappa) \in \mathbb{K}.$$

The problem is that it does not follow that $\mathscr{P}^i(l) \in \mathbb{L}$. Nevertheless, as equation (\star) shows, the inseparable closures of \mathbb{K} as a graded field and as a field over the Steenrod algebra coincide. We denote this object by $\mathbb{P}^*\sqrt{\mathbb{K}}$.

This leads to the following question: Under which conditions can we extend the action of \mathcal{P}^* from \mathbb{K} to \mathbb{L} ? Or equivalently, which intermediate fields $\mathbb{K} \subseteq \mathbb{L} \subseteq \sqrt[\mathcal{P}^*]{\mathbb{K}}$ are objects in the category of fields over the Steenrod algebra?

In this paper we study these questions in the more general framework of Noetherian integral domains H over the Steenrod algebra.

In Section 2 we recall the construction of inseparable closures over the Steenrod algebra and its basic properties. To this list we add a few more that will be of use later.

In Sections 3 and 4 we start with the investigation of inseparable extensions $H \hookrightarrow \sqrt[p^*]{H}$, where $\sqrt[p^*]{H}$ is either the symmetric algebra, $\mathbb{F}[V]$, on V^* with $V = \mathbb{F}^n$, or its field of fractions, $\mathbb{F}(V)$. This has two reasons: for one, $\mathbb{F}(V)$ and $\mathbb{F}[V]$ are universal, in the sense that they are algebraically closed in our category. On the other hand, any unstable Noetherian integral domain H can be embedded into $\mathbb{F}[V]$ such that the inclusion

$$\mathbf{H} \hookrightarrow \mathbb{F}[V]$$

is finite; see the Embedding Theorem, Corollary 6.1.5 in [3]. Thus in Sections 3 and 4 we consider the diagram

$$\begin{array}{ccc}
\text{H} & & & & \\
& & & \\
\downarrow & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

where $\mathbb{H} = FF(H)$ is the field of fractions of H. In Section 3 we treat the case of purely inseparable extensions of exponent one, in Section 4 we look at extensions with higher exponents e. Denote by $\overline{(-)}$ the integral closure. The results of these parts show that¹

$$\overline{\mathbf{H}} = \mathbb{F}[W_0] \otimes \mathbb{F}[W_1]^p \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e} \text{ and}$$

$$\mathbb{H} = \mathbb{F}(W_0) \otimes \mathbb{F}(W_1)^p \otimes \cdots \otimes \mathbb{F}(W_e)^{p^e}$$

for some vector space decomposition $V = W_0 \oplus W_1 \oplus \cdots \oplus W_e$; see Theorem 4.13 and Corollary 4.14.² This reproves results in [8], Theorem II, and [3], Theorem 7.2.2. However, the proof presented here has the advantage that it gives precise information on the vector space dimensions of the W_i 's.

 $^{^1}$ All tensor products in this manuscript are tensor products over the ground field $\mathbb F.$

²We denote by $\mathbb{F}[V]^p$ the algebra $\mathbb{F}[x_1^p,\ldots,x_n^p]$ for $\mathbb{F}[V]=\mathbb{F}[x_1,\ldots,x_n]$.

In Section 5 we come to the general case. By the Galois Embedding Theorem (Theorem 7.1.1 in [3]), we know that $\sqrt[\mathcal{P}^*]{H}$ is a ring of invariants of some finite group $G \leq \mathrm{GL}(V)$ acting linearly on $\mathbb{F}[V]$. Thus

$$\overline{\overline{H}} \xrightarrow{\mathbb{P}^* / \overline{\overline{H}}} = \mathbb{F}[V]^G$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{H} \xrightarrow{\mathbb{P}^* / \overline{\overline{H}}} = \mathbb{F}(V)^G.$$

It turns out that there exists a vector space decomposition as above,

$$V = W_0 \oplus W_1 \oplus \cdots \oplus W_e,$$

such that G acts on the flags

$$W_0 \oplus W_1 \oplus \cdots \oplus W_i$$

for all $i = 0, \ldots, e$. Moreover

$$\overline{\mathbf{H}} = (\mathbb{F}[W_0] \otimes \mathbb{F}[W_1]^p \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e})^G \text{ and}$$

$$\mathbb{H} = (\mathbb{F}(W_0) \otimes \mathbb{F}(W_1)^p \otimes \cdots \otimes \mathbb{F}(W_e)^{p^e})^G;$$

see Theorem 5.2. This extends results in [8], Theorem II, and [3], Theorem 7.2.2, in the sense that we are able to determine the vector space dimensions of the W_i 's and, more importantly, are able to prove that the group G in question remains unchanged. In particular this means that the group G must consist of flag matrices

$$\begin{bmatrix} A_0 & 0 & & \dots & 0 \\ * & A_1 & 0 & \dots & 0 \\ & * & \ddots & & \vdots \\ \dots & & \ddots & & 0 \\ * & & \dots & * & A_e \end{bmatrix},$$

where A_i is an $m_i \times m_i$ -matrix with $m_i = \dim(W_i)$. On the other hand, if V has no basis such that G consists of flag matrices, then the only purely inseparable extensions of exponent e are

$$(\mathbb{F}[V]^{p^e})^G \subseteq \mathbb{F}[V]^G.$$

In Section 6 we take a break from these constructive methods and look at homological properties of H and $\sqrt[p^*]{H}$. We show that H is Cohen-Macaulay if and only if $\sqrt[p^*]{H}$ is Cohen-Macaulay for any reduced Noetherian unstable algebra H.

This motivates Section 7, where we look at polynomial rings. It turns out that $\sqrt[p^*]{H}$ is a polynomial algebra if and only if H is polynomial. Moreover, $\sqrt[p^*]{H} = \mathbb{F}[h_1, \ldots, h_n]$ if and only if

$$\mathbf{H} = \mathbb{F}[h_1, \dots, h_{n_0}, h_{n_0+1}^0, \dots, h_{n_1}^p, h_{n_1+1}^{p^2}, \dots, h_{n_e}^{p^e}],$$

where $n_e = n$ and $n_i = \dim_{\mathbb{F}}(W_0 \oplus \cdots \oplus W_i)$. Recall that an unstable \mathcal{P}^* -inseparably closed polynomial algebra over the Steenrod algebra is the ring of invariants $\mathbb{F}[V]^G$ for some $G \leq \mathrm{GL}(n,\mathbb{F})$ by the Galois Embedding Theorem (Theorem 7.1.1 in [3]). Combined with the results from Section 5, this means that if G consists of flag matrices, then H is polynomial if and only if $\mathbb{F}^*\sqrt{H}$ is polynomial, and the generators are just pth powers/roots of one another. However, if G does not consist of flag

matrices, then there exists no unstable algebra $\mathbf{H} \hookrightarrow \mathbb{F}[V]^G$ such that $\sqrt[p^*]{\mathbf{H}} = \mathbb{F}[V]^G$. This solves a twenty-year-old conjecture due to Clarence Wilkerson; see Conjecture 5.1 in [8].

Part of this work was done during my stay at the National Australian University, Canberra, in June 2003. I thank David Benson, Henning Krause, and Amnon Neeman for the invitation and their hospitality. I also thank the referee for helpful comments.

2. Recollections and preliminaries

Let H be an unstable reduced algebra over the Steenrod algebra of reduced powers \mathcal{P}^* . We denote the characteristic by p, and the order of the ground field \mathbb{F} by q. Recall that the Steenrod algebra contains an infinite sequence of derivations iteratively defined as

$$\mathcal{P}^{\Delta_1} = \mathcal{P}^1,$$

$$\mathcal{P}^{\Delta_i} = \mathcal{P}^{\Delta_{i-1}} \mathcal{P}^{q^{i-1}} - \mathcal{P}^{q^{i-1}} \mathcal{P}^{\Delta_{i-1}} \quad \text{for } i > 2.$$

We set

$$\mathscr{P}^{\Delta_0}(h) = \deg(h)h \quad \forall h \in \mathbf{H}.$$

Note that \mathscr{P}^{Δ_0} is not an element of the Steenrod algebra.

The algebra H is called \mathcal{P}^* -inseparably closed, if whenever $h \in \mathcal{H}$ and

$$\mathscr{P}^{\Delta_i}(h) = 0 \quad \forall i \ge 0,$$

then there exists an element $h' \in H$ such that

$$(h')^p = h.$$

The \mathcal{P}^* -inseparable closure of H is a \mathcal{P}^* -inseparably closed algebra $\sqrt[\mathcal{P}^*]{H}$ containing H such that the following universal property holds: Whenever we have a \mathcal{P}^* -inseparably closed algebra H' containing H there exists an embedding $\varphi \colon \sqrt[\mathcal{P}^*]{H} \hookrightarrow H'$.

The following method to construct the \mathcal{P}^* -inseparable closure of H is taken from Section 4.1 in [3]. Denote by $\mathcal{C} \subseteq H$ the subalgebra consisting of the \mathscr{P}^{Δ_i} -constants for all $i \geq 0$, i.e.,

$$\mathcal{C} = \mathcal{C}(\mathbf{H}) = \{ h \in \mathbf{H} \mid \mathscr{P}^{\Delta_i}(h) = 0 \ \forall i \ge 0 \}.$$

It turns out that the subalgebra of constants \mathcal{C} is an unstable algebra over the Steenrod algebra (Lemma 4.1.2 loc.cit.). Moreover, it is Noetherian whenever H is (Lemma 4.1.1 loc.cit.). By construction we have integral extensions

$$H^p \hookrightarrow \mathcal{C} \hookrightarrow H$$
,

where $H^p = \{h^p \mid h \in H\}$. Denote by \mathscr{S} a set of generators for \mathcal{C} as a module over H^p . Define an algebra

$$H_1 = (H \otimes_{\mathbb{F}} \mathbb{F}[\gamma_s \mid s \in \mathscr{S}]) / \Re ad(\gamma_s^p - s \mid s \in \mathscr{S}),$$

where $\Re ad(-)$ denotes the radical of the ideal (-). Note that this construction comes with a canonical inclusion

$$\varphi_0 \colon \mathbf{H} \hookrightarrow \mathbf{H}_1,$$

by part (5) of Lemma 4.1.3 in [3]. Since the new algebra H₁ is again an unstable reduced algebra over the Steenrod algebra (see Lemma 4.1.4 loc.cit.), we can iterate the construction and obtain a nested sequence

$$H = H_0 \hookrightarrow H_1 \hookrightarrow \cdots \hookrightarrow H_i \hookrightarrow \cdots \hookrightarrow$$

of unstable reduced algebras over the Steenrod algebra. The colimit of this sequence is the P*-inseparable closure of H (Proposition 4.1.5 loc.cit.). We recall the basic properties of $\sqrt[p^*]{H}$ and the intermediate algebras H_i .

Proposition 2.1. Consider the chain of unstable reduced algebras

$$H = H_0 \hookrightarrow H_1 \hookrightarrow \cdots \hookrightarrow H_i \hookrightarrow \cdots \hookrightarrow {}^{\mathfrak{P}^*} \overline{H}.$$

Then the following statements hold.

- (1) If one of the algebras in this chain is an integral domain, then so are the
- (2) $H \hookrightarrow \sqrt[p^*]{H}$ is an integral extension, and both algebras have the same Krull
- (3) If H is integrally closed, then so is $\sqrt[p^*]{H}$.
- (4) The following statements are equivalent.
 - H is Noetherian.

 - H_i is Noetherian. $\sqrt[p^*]{H}$ is Noetherian.
 - There exists an r such that

$$H_r = H_{r+1} = \cdots = \sqrt[p^*]{H}.$$

Proof. For (1)–(3) see Proposition 4.2.1 in [3]. For (4) see part (2) of Lemma 4.1.3, Lemma 4.2.2, Proposition 4.2.4, and Theorem 6.3.1 loc.cit.

Lemma 2.2. Let H be an integral domain. If H is integrally closed, then the algebras H_i are also integrally closed for all i.

Proof. It is shown in part (5) of Proposition 4.2.1 in [3] that $\sqrt[p^*]{H}$ is integrally closed whenever H is integrally closed. The same argument presented there can be used to show that also the algebras H_i are also integrally closed.

In the same way the \mathcal{P}^* -inseparable closure of a field \mathbb{K} over the Steenrod algebra can be constructed. So we obtain a chain of fields over the Steenrod algebra

$$\mathbb{K} = \mathbb{K}_0 \hookrightarrow \mathbb{K}_1 \hookrightarrow \cdots \hookrightarrow \mathbb{K}_i \hookrightarrow \cdots \hookrightarrow \sqrt[p^*]{\mathbb{K}}$$

by adjoining successively pth roots. Again the pth powers are detected by the vanishing of the derivations \mathscr{P}^{Δ_i} ; see Section 2.3 in [3].

Let H be an unstable integral domain over the Steenrod algebra. Denote by \mathbb{H} its field of fractions. We have seen in Proposition 4.2.6 in [3] that

$$FF(\sqrt[\mathfrak{P}^*]{\mathbb{H}}) = \sqrt[\mathfrak{P}^*]{\mathbb{H}},$$

where FF(-) denotes the field of fraction functor.

Our first goal is to refine this statement. For this we need the following result.

Proposition 2.3. Let H be an unstable integral domain. Then

$$\mathcal{C}(\mathbb{H}) = FF(\mathcal{C}(\mathbf{H})).$$

Proof. Let $\frac{f_1}{f_2} \in \mathcal{C}(\mathbb{H})$, $f_1, f_2 \in \mathbb{H}$. Then there exists an element $\frac{h_1}{h_2} \in \sqrt[p^*]{\mathbb{H}} = FF(\sqrt[p^*]{\mathbb{H}})$, $h_1h_2 \in \sqrt[p^*]{\mathbb{H}}$, such that

$$\frac{h_1^{p^k}}{h_2^{p^k}} = \frac{f_1}{f_2}$$

for some $k \in \mathbb{N}_0$. Furthermore, since $h_1, h_2 \in \sqrt[p^*]{H}$ we can choose k such that $h_1^{p^k}, h_2^{p^k} \in H$. By construction, $h_1^{p^k}, h_2^{p^k}$ are in the subalgebra of constants, $\mathcal{C}(H)$. Thus

$$\frac{f_1}{f_2} = \frac{h_1^{p^k}}{h_2^{p^k}} \in FF(\mathcal{C}(\mathcal{H}))$$

which shows that

$$\mathcal{C}(\mathbb{H}) \subseteq FF(\mathcal{C}(\mathbb{H})).$$

Conversely, let $\frac{f_1}{f_2} \in FF(\mathcal{C}(H))$ with $f_1, f_2 \in \mathcal{C}(H)$. Then

$$\frac{f_1}{f_2} \in \mathbb{H}$$

is a constant because

$$\mathscr{P}^{\Delta_i}\left(\frac{f_1}{f_2}\right) = \frac{\mathscr{P}^{\Delta_i}(f_1)f_2 - f_1\mathscr{P}^{\Delta_i}(f_2)}{f_2^2} = 0$$

for all $i \in \mathbb{N}_0$.

Proposition 2.4. Let H be an unstable integral domain over the Steenrod algebra. Denote by \mathbb{H} its field of fractions. Then for all $i \in \mathbb{N}_0$ we have

$$FF(\mathbf{H}_i) = \mathbb{H}_i$$
.

Proof. By induction it is enough to show the statement for i = 1. If $\frac{h_1}{h_2} \in FF(\mathcal{H})_1$ for $h_1, h_2 \in \mathcal{H}_1$, then $\frac{h_1^p}{h_2^p} \in FF(\mathcal{H}_0) = \mathbb{H}_0 = \mathbb{H}$. Thus $\frac{h_1}{h_2} \in \mathbb{H}_1$, since \mathbb{H}_1 is obtained from \mathbb{H}_0 by adjoining all pth roots. Thus $FF(\mathcal{H}_1) \subseteq \mathbb{H}_1$.

We prove the reverse inclusion. Let $h \in \mathbb{H}_1$. Then $h^p \in \mathbb{H} = FF(H)$. Thus by Proposition 2.3

$$h^p \in \mathcal{C}(\mathbb{H}) = FF(\mathcal{C}(\mathbb{H})).$$

Thus there exist elements $h_1, h_2 \in \mathcal{C}(H)$ such that

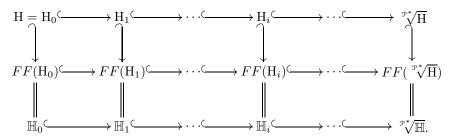
$$h^p = \frac{h_1}{h_2}.$$

Moreover, since the elements h_1, h_2 are constants they have pth roots, say f_1, f_2 , in H_1 . Thus

$$h = \frac{f_1}{f_2} \in FF(\mathcal{H}_1)$$

and we are done.

Hence we obtain chains



Let H be an unstable Noetherian integral domain over the Steenrod algebra. Then there exists an $r \in \mathbb{N}_0$ such that $H_r = \sqrt[p^*]{H}$; see Theorem 6.1.3 and Proposition 4.2.4 in [3]. Also, there exists an $s \in \mathbb{N}_0$ such that $\mathbb{H}_s = \sqrt[p^*]{H}$, loc.cit. Without loss of generality we assume that r and s are minimal with respect to this property. Then by Proposition 4.2.4 in [3] we have that $r \geq s$. Thus for Noetherian unstable algebras we obtain *finite* chains

$$H = H_0 \longrightarrow H_1 \longrightarrow \cdots \longrightarrow H_s \longrightarrow H_{s+1} \longrightarrow \cdots \longrightarrow H_r = \sqrt[p^*]{H}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$FF(H_0) \hookrightarrow FF(H_1) \hookrightarrow \cdots \hookrightarrow FF(H_s) = FF(H_{s+1}) = \cdots = FF(H_r)$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\parallel \qquad \parallel$$

$$\parallel \qquad \qquad \parallel$$

$$\parallel \qquad$$

Corollary 2.5. Let H be an unstable Noetherian integral domain. Let H be integrally closed. Then with the preceding notation, r = s.

Proof. By Proposition 2.4, $FF(H_i) = \mathbb{H}_i$. Moreover, H_i is integrally closed for all i by Lemma 2.2. Thus for all i the unstable part of $FF(H_i)$ is

$$Un(FF(H_i)) = H_i;$$

see Theorem 2.4 in [4]. Thus

$$\mathbf{H}_s = \mathcal{U}n(FF(\mathbf{H}_s)) = \mathcal{U}n(FF(\mathbf{H}_r)) = \mathbf{H}_r$$

as desired.

3. Inseparable extensions of exponent 1

Let H be an unstable Noetherian reduced algebra over the Steenrod algebra. Define the H-module

$$Der_{\mathbf{H}} = \operatorname{span}_{\mathbf{H}} \{ \mathscr{P}^{\Delta_i} \mid i \in \mathbb{N}_0 \}.$$

Then Der_H is free as a module over H; see Proposition 1.1.7 and Theorem 1.2.1 in [3].³ Moreover it is a restricted Lie algebra of derivations acting on H; cf. Section 2.4 in [3]. We denote by

$$\mathcal{C}_{\mathrm{Der}_{\mathrm{H}}}(\mathrm{H}) = \{ h \in \mathrm{H} \mid \mathscr{P}^{\Delta_i}(h) = 0 \ \forall i \} \subseteq \mathrm{H}$$

the subalgebra of constants with respect to the derivations in Der_H.

 $^{^3 \}text{The module Der}_{\text{H}}$ is the module $\Delta(\text{H})$ in this reference.

Remark. In Section 2 we called the subalgebra of constants just $\mathcal{C} = \mathcal{C}(H)$. For what follows however, we need to keep track of the module of derivations that is used.

Clearly,

$$H^p \subseteq \mathcal{C}_{Derh}$$

as $\mathscr{P}^{\Delta_i}(h^p) = 0$ for all $h \in \mathbb{H}$ and $i \in \mathbb{N}_0$. Since the extension

$$\mathbf{H}^p \subseteq \mathbf{H}$$

is purely inseparable of exponent one, so is the extension

$$H^p \subseteq \mathcal{C}_{Der_H}(H)$$
.

Thus

$$\sqrt[p^*]{H^p} = \sqrt[p^*]{\mathcal{C}_{\mathrm{Der}_{\mathrm{H}}}(\mathrm{H})} = \sqrt[p^*]{\mathrm{H}}.$$

Proposition 3.1. Let H be an unstable reduced algebra over the Steenrod algebra. Then H is \mathcal{P}^* -inseparably closed if and only if

$$\mathcal{C}_{\mathrm{Der}_{\mathrm{H}}}(\mathrm{H}) = \mathrm{H}^{p}.$$

Proof. Assume that H is \mathcal{P}^* -inseparably closed. By what we have done so far we know that $H^p \subseteq \mathcal{C}_{Der_H}(H)$. To prove the reverse inclusion, let $h \in \mathcal{C}_{Der_H}(H)$. Then $\mathscr{P}^{\Delta_i}(h) = 0$ for all $i \in \mathbb{N}_0$. Thus there exists an element

$$f \in \sqrt[\mathcal{P}^*]{\mathcal{C}_{\mathrm{Der}_{\mathrm{H}}}(\mathrm{H})} = \sqrt[\mathcal{P}^*]{\mathrm{H}} = \mathrm{H}$$

such that $f^{p^k} = h$. Since $f^{p^k} \in H^p$ for all $f \in H$, we have $h = f^{p^k} \in H^p$, and hence $H^p = \mathcal{C}_{Der_H}(H)$. Conversely, assume that

$$H^p = \mathcal{C}_{\mathrm{Der}_{\mathrm{H}}}(H) \subseteq H \subseteq \sqrt[p^*]{\mathrm{H}}.$$

Let $h \in \sqrt[p^*]{H}$. Thus there exists a $k \in \mathbb{N}_0$ such that $h^{p^k} \in H$. Since Der_H vanishes on pth powers we find that

$$h^{p^k} \in \mathcal{C}_{\mathrm{Der_H}}(\mathbf{H}) = \mathbf{H}^p$$
.

Thus $h^{p^{k-1}} \in \mathcal{H}$. Iteratively we find that $h \in \mathcal{H}$, i.e., \mathcal{H} is \mathcal{P}^* -inseparably closed. \square

Corollary 3.2. We have

$$\mathcal{C}_{\mathrm{Der}_{\mathbb{F}[V]}}(\mathbb{F}[V]) = \mathbb{F}[V]^p = \mathbb{F}[x_1^p, \dots, x_n^p].$$

Proof. Since $\mathbb{F}[V]$ is \mathcal{P}^* -inseparably closed (see Corollary 4.2.8 in [3]), this result is an immediate corollary of Proposition 3.1.

We recall some facts about Der_H and its action on H. First the Lie algebra structure is particularly simple, namely

$$[\mathscr{P}^{\Delta_i}, \mathscr{P}^{\Delta_j}] = \begin{cases} 0 & \text{if } i, j > 0, \\ \mathscr{P}^{\Delta_i} & \text{if } i \neq 0 \text{ and } j = 0, \\ -\mathscr{P}^{\Delta_j} & \text{if } i = 0 \text{ and } j \neq 0 \end{cases}$$

(see the remark on page 12 of [3]), and

$$(\mathbf{Y}) \qquad (\mathscr{P}^{\Delta_i})^p = 0$$

(see Section 2.4 in [3]). The Δ -length of H is defined to be the smallest integer⁴ $\lambda_{\rm H}$ such that the derivation

$$h_0 \mathscr{P}^{\Delta_{i_0}} + \cdots + h_{\lambda} \mathscr{P}^{\Delta_{i_{\lambda}}}$$

vanishes on H for some $h_0, \ldots, h_{\lambda} \in H$ and $i_0, \ldots, i_{\lambda} \in \mathbb{N}_0$ (see Section 1.2 in [3]).⁵ In this case, any $\lambda + 1$ derivations are linearly dependent over H (Proposition 1.1.7 in [3]). The Δ -length λ_H is at most the Krull dimension of H over \mathbb{F} (cf. Corollary 1.2.2 in [3]). Moreover, the coefficients can be chosen to be

$$h_i = (-1)^i \mathbf{d}_{\lambda,i}$$

(up to a sign) the Dickson classes in dimension λ (see Theorems 5.1.9 and 5.2.1 in [3]). Note that by convention $\mathbf{d}_{\lambda,\lambda} = 1$. Then the normalized equation

$$(\mathbf{d}_{\lambda,0}\mathscr{P}^{\Delta_0} - \dots + (-1)^{\lambda} \mathbf{d}_{\lambda,\lambda} \mathscr{P}^{\Delta_{\lambda}})(h) = 0 \quad \forall h \in \mathbf{H}$$

is called the Δ -relation of H. By abuse of notation, we also call the element

$$\mathbf{d}_{\mathrm{H}} = \mathbf{d}_{\lambda,0} \mathscr{P}^{\Delta_0} - \dots + (-1)^{\lambda} \mathbf{d}_{\lambda,\lambda} \mathscr{P}^{\Delta_{\lambda}} \in \mathrm{Der}_{\mathrm{H}}$$

the Δ -relation for H.⁶ Finally we note that the Δ -length of H is equal to its Krull dimension if H is \mathcal{P}^* -inseparably closed (cf. Theorem 8.1.5 in [3]). The converse is not quite true as the following example taken from Section 7.4 in [3] shows.

Example 3.3. Consider the field $\mathbb{F} = \mathbb{F}_2$ with two elements, and take a polynomial algebra in two linear generators $x, y, \mathbb{F}[x, y]$. The Dickson algebra in this case is

$$\mathcal{D}(2) = \mathbb{F}[x^2y + xy^2, x^2 + y^2 + xy] \hookrightarrow \mathbb{F}[x, y].$$

Define an intermediate algebra H by

$$\mathbf{H} = \mathbb{F}[x^2 + y^2, xy, xy(x+y)] / ((x^2 + y^2)(xy) + (xy(x+y))^2).$$

Then H is an unstable integral domain, but it is not \mathcal{P}^* -inseparably closed because

$$\mathscr{P}^{\Delta_i}(x^2 + y^2) = 0 \quad \forall i \ge 0, \text{ but } x + y \notin H.$$

However, its Δ -relation

$$\mathbf{d}_{\mathrm{H}} = \mathbf{d}_{2.0} \mathscr{P}^{\Delta_0} - \mathbf{d}_{2.1} \mathscr{P}^{\Delta_1} + \mathscr{P}^{\Delta_2}$$

has length 2, which is equal to its Krull dimension. Note that the field of fractions of H,

$$FF(H) = \mathbb{F}(x+y, xy),$$

is inseparably closed. Therefore the algebra H is not integrally closed because $x + y \notin H$ (cf. Corollary 2.5).

Proposition 3.4. Let H be an unstable Noetherian integral domain. If the Δ -length $\lambda_{\rm H}$ is equal to the Krull dimension n of H, then

$$\sqrt[p^*]{H} \subseteq \overline{H},$$

where $\overline{(-)}$ denotes the integral closure.

⁴If there is no possible confusion we will omit the subscript and just write $\lambda = \lambda_{\rm H}$.

⁵If $\lambda_{\rm H} \in \mathbb{N}_0$ exists, then H is called Δ -finite. This is a weaker condition than Noetherianess. For example the polynomial algebra $\mathbb{F}[x_1^p, x_2^p, \dots]$ in infinitely many generators has Δ -length zero, but it is not Noetherian.

 $^{^6\}mathrm{We}$ will suppress the subscript, and write d for d_H if no confusion is possible.

Proof. Since the Δ -length of H is equal to its Krull dimension, we have integral extensions

$$\mathcal{D}(n) \hookrightarrow \mathbf{H} \hookrightarrow \sqrt[p^*]{\mathbf{H}} \hookrightarrow \mathbb{F}[V]$$

by the Little Imbedding Theorem (Theorem 7.4.4 in [3]) and the Embedding Theorem (Corollary 6.1.5 loc.cit.). The corresponding extensions of the field of fractions are Galois extensions, so in particular separable. Since $FF(H) \subseteq FF(\P^*V,\overline{H})$ is also purely inseparable, we have $FF(\P^*V,\overline{H}) = FF(H) = FF(\overline{H})$. Thus $FF(H) = \mathbb{F}(V)^G$ for some group $G \leq GL(V)$. Therefore, $\overline{H} = \mathbb{F}[V]^G$ is inseparably closed. Hence $\P^*V,\overline{H} \hookrightarrow \overline{H}$ by the universal property of the inseparable closure.

Remark. Note that it follows from the preceding result that if H is integrally closed and the Δ -length is equal to its Krull dimension, then

$$\sqrt[p^*]{H} = \overline{H} = H.$$

We want to investigate purely inseparable extensions $\mathcal{H} \hookrightarrow \mathbb{F}[V]$ of exponent one, i.e., we have

$$\mathbb{F}[V]^p \hookrightarrow \mathcal{H} \hookrightarrow \mathbb{F}[V].$$

For this we turn our attention to the corresponding extensions of fields of fractions

$$\mathbb{F}(V)^p \hookrightarrow \mathbb{H} \hookrightarrow \mathbb{F}(V).$$

Let $\operatorname{Der}_{\mathbb{H}}$ be the vector space over \mathbb{H} generated by the elements \mathscr{P}^{Δ_i} for $i \in \mathbb{N}_0$. Since the relations (\maltese) and (\ddag) are intrinsic of the Steenrod algebra, the vector space $\operatorname{Der}_{\mathbb{H}}$ is also a restricted Lie algebra. Thus any vector subspace of $\operatorname{Der}_{\mathbb{H}}$ is a restricted Lie subalgebra and vice versa.

Proposition 3.5. Let H be an unstable integral domain and \mathbb{H} its field of fractions. The vector space $Der_{\mathbb{H}}$ satisfies the following properties.

- (1) The elements \mathscr{P}^{Δ_i} are derivations on \mathbb{H} .
- (2) The Δ -relation $\mathbb H$ is well defined, and coincides with the Δ -relation on $\mathbb H$. In particular, the Δ -lengths are equal.

Proof. AD(1): The action of \mathscr{P}^{Δ_i} on \mathbb{H} is given by the formula

$$\mathscr{P}^{\Delta_i}\left(\frac{f_1}{f_2}\right) = \frac{\mathscr{P}^{\Delta_i}(f_1)f_2 - f_1\mathscr{P}^{\Delta_i}(f_2)}{f_2^2}$$

for any $f_1, f_2 \in H$. Thus they are derivations on the field of fractions also.

AD(2): The set $Der_{\mathbb{H}}$ is a vector space by construction. Let $\lambda_{\mathbb{H}}$ be its dimension. Then any $\lambda_{\mathbb{H}} + 1$ elements are linearly independent. Thus the Δ -length is $\lambda_{\mathbb{H}}$ with Δ -relation

$$d = f_0 \mathscr{P}^{\Delta_0} + \dots + f_{\lambda} \mathscr{P}^{\Delta_{\lambda}}.$$

Without loss of generality we can assume that the coefficients $f_i \in H$ for all i. Thus $\lambda_{\mathbb{H}}$ is at least equal to the Δ -length, $\lambda_{\mathbb{H}}$, of H. On the other hand, if $\mathbf{d}_{\mathbb{H}}$ is a Δ -relation for H, then by

$$\mathbf{d}_{\mathrm{H}}\left(\frac{f_{1}}{f_{2}}\right) = \frac{\mathbf{d}_{\mathrm{H}}(f_{1})f_{2} - f_{1}\mathbf{d}_{\mathrm{H}}(f_{2})}{f_{2}^{2}} = 0$$

 \mathbf{d}_{H} vanishes also on \mathbb{H} . Thus $\lambda_{\mathbb{H}} \leq \lambda_{\mathrm{H}}$. Therefore $\lambda_{\mathbb{H}} = \lambda_{\mathrm{H}}$ and $\mathbf{d}_{\mathbb{H}} = \mathbf{d}_{\mathrm{H}}$.

Corollary 3.6. Let H be an unstable integral domain and \overline{H} its integral closure. Then

$$\lambda_{\mathrm{H}} = \lambda_{\overline{\mathrm{H}}} \quad and \quad \mathbf{d}_{\mathrm{H}} = \mathbf{d}_{\overline{\mathrm{H}}}.$$

Proof. By Proposition 3.5, part (2), Δ -lengths, as well as the Δ -relations of H and its field of fractions, coincide. Since H and \overline{H} have the same field of fractions we are done.

Lemma 3.7. Let $H' \subseteq H$ be unstable reduced Noetherian algebras over the Steenrod algebra. Denote by $\lambda_{H'}$, resp. λ_{H} , the Δ -length of H', resp. H. Then $\lambda_{H'} \leq \lambda_{H}$.

Proof. By Corollary 3.6 the Δ -length and Δ -relation of an unstable algebra H and its integral closure \overline{H} are equal. Thus without loss of generality we assume that H' and H are integrally closed.

Denote by $\mathcal{D}(l)$ the Dickson algebra of dimension l. By Theorem 5.1.9 in [3]

$$\mathfrak{D}(\lambda_{\mathrm{H}}) \hookrightarrow \mathbb{H}$$

is a maximal Dickson algebra in \mathbb{H} . Applying the same theorem for \mathbb{H}' gives

$$\mathfrak{D}(\lambda_{H'}) \hookrightarrow \mathbb{H}' \hookrightarrow \mathbb{H}.$$

Since $\mathcal{D}(\lambda_{H})$ is the maximal Dickson algebra in \mathbb{H} , we find that $\lambda_{\mathbb{H}'} \leq \lambda_{\mathbb{H}}$ as desired.

Lemma 3.8. Let U and W be finite dimensional vector spaces over \mathbb{F} . We note that the Δ -length λ of $\mathbb{F}[U] \otimes \mathbb{F}[W]^{p^t}$, t > 0, is equal to the vector space dimension of U with Δ -relation

$$\mathbf{d} = \mathbf{d}_{\lambda,0} \mathscr{P}^{\Delta_0} - \dots + (-1)^{\lambda} \mathbf{d}_{\lambda,\lambda} \mathscr{P}^{\Delta_{\lambda}},$$

where $\mathbb{F}[U]^{\mathrm{GL}(\lambda,\mathbb{F})} = \mathbb{F}[\mathbf{d}_{\lambda,0},\ldots,\mathbf{d}_{\lambda,\lambda-1}].$

Proof. The element **d** is a Δ -relation for $\mathbb{F}[U]$ by Theorem 1.2.3 in [3]. Since \mathscr{P}^{Δ_i} vanishes on pth powers for all $i \in \mathbb{N}_0$, the element **d** vanishes on $\mathbb{F}[U] \otimes \mathbb{F}[W]^{p^t}$. So, $\lambda \leq \dim_{\mathbb{F}}(U)$.

On the other hand, $\mathbb{F}[U] \hookrightarrow \mathbb{F}[U] \otimes \mathbb{F}[W]^{p^t}$. Therefore by Lemma 3.7 the Δ -length is at least $\dim_{\mathbb{F}}(U)$, and we are done.

Corollary 3.9. The Δ -length λ of $\mathbb{F}(U) \otimes \mathbb{F}(W)^{p^t}$ is equal to the vector space dimension of U, for $t \geq 1$. The subfield of constants is

$$\mathcal{C}_{\mathrm{Der}_{\mathbb{F}(U)\otimes\mathbb{F}(W)^{p}}}(\mathbb{F}(U)\otimes\mathbb{F}(W)^{p^{t}})=\mathbb{F}(U)^{p}\otimes\mathbb{F}(W)^{p^{t}}.$$

Moreover, the Δ -relation is

$$\mathbf{d} = \mathbf{d}_{\lambda,0} \mathscr{P}^{\Delta_0} + \dots + (-1)^{\lambda} \mathbf{d}_{\lambda,\lambda} \mathscr{P}^{\Delta_{\lambda}}.$$

Proof. This is immediate from part (2) of Proposition 3.5, Lemma 3.8, and Corollary 3.2. $\hfill\Box$

Since the Δ -relation of $\mathbb{F}(V)$ has length $n=\dim_{\mathbb{F}}(V)$, we have $\dim_{\mathbb{F}(V)}(\mathrm{Der}_{\mathbb{F}(V)})$ = n and

$$\operatorname{Der}_{\mathbb{F}(V)} = \operatorname{span}_{\mathbb{F}(V)} \{ \mathscr{P}^{\Delta_0}, \dots, \mathscr{P}^{\Delta_{n-1}} \}.$$

Moreover, the index over the subfield of constants is

$$[\mathbb{F}(V):\mathbb{F}(V)^p] = p^n.$$

Thus we can apply the structure theorem for purely inseparable extensions of exponent one (see, e.g., Chapter IV, Section 8 in [1]). It tells us that

$$\mathbb{H} \subseteq \mathbb{F}(V)$$

is a purely inseparable extension of exponent one if and only if there exists a restricted Lie subalgebra $D \subseteq \operatorname{Der}_{\mathbb{F}(V)}$ such that

$$\mathbb{H} = \mathcal{C}_{\mathrm{D}}(\mathbb{F}(V)).$$

So, take a subspace $D \subseteq Der_{\mathbb{F}(V)}$. We recall from Corollary 3.9 that

$$\mathbb{F}(V) = \mathcal{C}_{\mathcal{D}}(\mathbb{F}(V))$$
 for $\mathcal{D} = 0$

and

$$\mathbb{F}(V)^p = \mathcal{C}_{\mathcal{D}}(\mathbb{F}(V))$$
 for $\mathcal{D} = \mathrm{Der}_{\mathbb{F}(V)}$.

Thus we are left to characterize those $D \subseteq Der_{\mathbb{F}(V)}$ such that $\mathbb{H} = \mathcal{C}_D(\mathbb{F}(V))$ carries a \mathcal{P}^* -module structure.

Proposition 3.10. Let $\mathbb{K} \hookrightarrow \mathbb{F}(V)$ be a field over the Steenrod algebra. Let \mathbf{d} be the Δ -relation of \mathbb{K} with Δ -length λ . Then the vector space of derivations vanishing on \mathbb{K} ,

$$D_{\mathbb{K}} = \operatorname{span}_{\mathbb{F}} \{ d \in \operatorname{Der}_{\mathbb{F}(V)} |d|_{\mathbb{K}} = 0 \},$$

has dimension $n - \lambda$, where $n = \dim_{\mathbb{F}}(V)$.

Proof. The Δ -relation of \mathbb{K} is

$$\mathbf{d} = \mathbf{d}_{\lambda,0} \mathscr{P}^{\Delta_0} + \dots + (-1)^{\lambda} \mathbf{d}_{\lambda,\lambda} \mathscr{P}^{\Delta_{\lambda}}.$$

By Proposition 1.1.7 in [3] any $\lambda + 1$ derivations in $\operatorname{Der}_{\mathbb{F}(V)}$ are linearly dependent. Moreover by Lemma 1.1.8 loc.cit. we find that in particular the $n - \lambda$ elements

$$\mathbf{d}_i = \mathbf{d}_{\lambda,0}^{q^i} \mathscr{P}^{\Delta_i} + \dots + (-1)^{\lambda} \mathbf{d}_{\lambda,\lambda}^{q^i} \mathscr{P}^{\Delta_{\lambda+1}}$$

for $i=0,\ldots,n-\lambda-1$ vanish on \mathbb{K} . Since the \mathbf{d}_i 's are linearly independent in $\mathrm{Der}_{\mathbb{F}(V)}$ we have that

$$\dim(D_{\mathbb{K}}) \geq n - \lambda.$$

On the other hand, if $d \in D_{\mathbb{K}}$, then

$$d = f_0 \mathscr{P}^{\Delta_0} + \dots + f_{n-1} \mathscr{P}^{\Delta_{n-1}}.$$

Then there are $k_0, \ldots, k_{n-1-\lambda}$ such that

(*)
$$d - \sum_{i=0}^{n-1-\lambda} k_i \mathbf{d}_i = f_0' \mathscr{P}^{\Delta_0} + \dots + f_{\lambda-1}' \mathscr{P}^{\Delta_{\lambda-1}}$$

for some $f'_0, \ldots, f'_{\lambda-1} \in \mathbb{K}$. Thus if d were linearly independent of the \mathbf{d}_i 's, then the expression (*) is not zero. This in turn means that there is a relation on \mathbb{K} shorter than the Δ -relation. This is a contradiction. Therefore $\dim(\mathbb{D}_{\mathbb{K}}) = n - \lambda$.

Theorem 3.11. The extension $\mathbb{H} \subseteq \mathbb{F}(V)$ is a purely inseparable extension of exponent one of fields over the Steenrod algebra if and only if

$$\mathbb{H} = \mathbb{F}(x_1, \dots, x_k, x_{k+1}^p, \dots, x_n^p) = \mathbb{F}(U) \otimes \mathbb{F}(V/U)^p$$

for some $k \in \{1, ..., n\}$ and $\dim(U) = k$. Furthermore, in this case

$$\mathbb{H} = \mathcal{C}_{\mathrm{D}}(\mathbb{F}(V))$$

where D has vector space dimension n - k. If k < n, then D is generated by the Δ -relation of \mathbb{H} ,

$$\mathbf{d}_{\mathbb{H}} = \mathbf{d}_{k,0} \mathscr{P}^{\Delta_0} + \dots + (-1)^k \mathbf{d}_{k,k} \mathscr{P}^{\Delta_k}$$

 $and\ its\ translates$

$$\mathbf{d}_i = \mathbf{d}_{k,0}^{q^i} \mathscr{P}^{\Delta_i} + \dots + (-1)^k \mathbf{d}_{k,k}^{q^i} \mathscr{P}^{\Delta_{k+i}}$$

for i = 1, ..., n - k - 1.

Proof. If

$$\mathbb{H} = \mathbb{F}(x_1, \dots, x_k, x_{k+1}^p, \dots, x_n^p),$$

then it is clearly a field over the Steenrod algebra. Moreover,

$$\mathbb{F}(x_1,\ldots,x_k,x_{k+1}^p,\ldots,x_n^p)=\mathcal{C}_{\mathrm{D}}(\mathbb{F}(V))$$

for D generated by the Δ -relation of \mathbb{H} and its translates \mathbf{d}_i of length $\lambda_{\mathrm{H}} = k$ (see Corollary 3.9 and Proposition 3.10).

We prove the converse. Set $\lambda = \lambda_{\mathbb{H}}$. Let **d** be the Δ -relation of \mathbb{H} . Then

$$\mathbf{d} = \mathbf{d}_{\lambda,0} \mathscr{P}^{\Delta_0} + \dots + (-1)^{\lambda} \mathbf{d}_{\lambda,\lambda} \mathscr{P}^{\Delta_{\lambda}}$$

vanishes on \mathbb{H} . Let $U \leq V$ be a vector subspace of dimension λ . We also note that the field $\mathbb{F}(U) \otimes \mathbb{F}(V/U)^p$ has Δ -relation \mathbf{d} and Δ -length λ by Corollary 3.9. Certainly,

$$\mathbb{F}(V)^p \hookrightarrow \mathbb{F}(U) \otimes \mathbb{F}(V/U)^p \hookrightarrow \mathbb{F}(V)$$

is a purely inseparable extension of exponent one. We show that $\mathbb{F}(U) \otimes \mathbb{F}(V/U)^p \hookrightarrow \mathbb{H}$. Since $\mathbb{H} \hookrightarrow \mathbb{F}(V)$ is purely inseparable of exponent one, we have

$$\mathbb{F}(V/U)^p \hookrightarrow \mathbb{H}.$$

Since the coefficients of the Δ -relation are the Dickson classes, we know that $FF(\mathcal{D}(\lambda)) \hookrightarrow \mathbb{H}$. Thus

$$FF(\mathcal{D}(\lambda)) \otimes \mathbb{F}(V/U)^p \hookrightarrow \mathbb{H}.$$

Since $\mathbb{H} \hookrightarrow \mathbb{F}(V)$ is purely inseparable, we find that the separable closure of $FF(\mathcal{D}(\lambda)) \otimes \mathbb{F}[V/U]^p$ is in \mathbb{H} . This in turn is just

$$\mathbb{F}(U) \otimes \mathbb{F}(V/U)^p \hookrightarrow \mathbb{H}.$$

Obviously $|\mathbb{F}(V)\colon\mathbb{F}(U)\otimes\mathbb{F}(V/U)^p|=p^{n-\lambda}$. By Theorem 19 on page 186 of [1] we have that also

$$|\mathbb{F}(V)\colon \mathbb{H}| = p^{n-\lambda}$$

because $\mathcal{D}_{\mathbb{H}}$ has dimension $n - \lambda$ (Proposition 3.10). Hence $\mathbb{H} = \mathbb{F}(U) \otimes \mathbb{F}(V/U)^p$ as desired.

Corollary 3.12. Let $H \subseteq \mathbb{F}[V]$ be a purely inseparable extension of exponent one. Let H be integrally closed. Then H is an unstable algebra over the Steenrod algebra if and only if $H = \mathbb{F}[x_1, \ldots, x_{\lambda}, x_{\lambda+1}^p, \ldots, x_n^p]$, where $\lambda = \lambda_H$ is the Δ -length of H.

Proof. If H is an unstable algebra over the Steenrod algebra, then \mathbb{H} is a field over the Steenrod algebra. Moreover, since $\mathbb{H} \hookrightarrow \mathbb{F}[V]$ has exponent one, so has the extension $\mathbb{H} \hookrightarrow \mathbb{F}(V)$. Thus $\mathbb{H} = \mathbb{F}(U) \otimes \mathbb{F}(V/U)^p$ for $\dim_{\mathbb{F}}(U) = \lambda$ by Theorem 3.11. Hence by Theorem 2.4 in [4]

$$H = \overline{H} = Un(H) = \mathbb{F}[U] \otimes \mathbb{F}[V/U]^p.$$

Conversely, the algebra $\mathbb{F}[U] \otimes \mathbb{F}[V/U]^p$ is certainly an unstable algebra over the Steenrod algebra.

Remark. For any unstable integral domain H its integral closure \overline{H} also carries an unstable \mathcal{P}^* -module structure because $\overline{H} = \mathcal{U}n(\mathbb{H})$ (see Theorem 2.4 in [4]). The converse is not true as we illustrate with the next example.

Example 3.13. Let \mathbb{F} be the prime field of characteristic 2 and let A be the subalgebra of $\mathbb{F}[x,y]$ generated by x,xy,y^3 . Then $A \hookrightarrow \mathbb{F}[x,y]$ is an integral extension. Moreover, $FF(A) = \mathbb{F}(x,y)$. Therefore $\overline{A} = \mathbb{F}[x,y]$ is an unstable algebra over the Steenrod algebra. However A does not carry a \mathcal{P}^* -module structure because

$$\mathscr{P}^1(xy) = x^2y + xy^2 \notin A$$
,

as the only elements of degree 3 in A are x^3, x^2, y^3 .

Thus the assumption $H = \overline{H}$ cannot be dropped in the preceding result.

Corollary 3.14. Let $U \leq V$. Denote $m = \dim_{\mathbb{F}}(U) \leq n = \dim_{\mathbb{F}}(V)$. Then

$$\mathbb{F}[U] \otimes \mathbb{F}[V/U]^p \hookrightarrow \mathbb{F}[V]$$

is the largest unstable subalgebra with Δ -length equal to m.

Proof. Certainly, $\mathbb{F}[U] \otimes \mathbb{F}[V/U]^p$ has Δ -length m. Let

$$(\star) \qquad \qquad \mathbb{F}[U] \times \mathbb{F}[V/U]^p \hookrightarrow \mathcal{H} \hookrightarrow \mathbb{F}[V]$$

be an intermediate unstable algebra with $\lambda_{\rm H}=m$. Since the extension (\star) is purely inseparable of exponent one, we have that

$$\mathbb{H} = \mathbb{F}(U') \otimes \mathbb{F}(V/U')^p$$

for some $U' \geq U$. But

$$\dim_{\mathbb{F}}(U) = m = \lambda_{\mathbb{H}} = \dim_{\mathbb{F}}(U')$$

and therefore U = U'. Hence

$$\mathbb{F}[U] \otimes \mathbb{F}[V/U]^p \subseteq \mathcal{H} \subseteq \mathcal{U}n(\mathcal{H}) = \overline{\mathcal{H}} = \mathbb{F}[U] \otimes \mathbb{F}[V/U]^p$$

gives the desired result.

4. Purely inseparable extensions of arbitrary exponent

In this section we proceed with the investigation of the purely inseparable extension

$$H \hookrightarrow \mathbb{F}[V].$$

We consider the general case of exponent $e \geq 1$. Thus we need to detect p^s th powers for $s = 1, \ldots, e$. We introduce the following operators for $s \in \mathbb{N}_0$:

$$\mathcal{P}^{\Delta_{s,0}} = \frac{1}{p^s} \deg(-) \mathrm{id}(-),$$

$$\mathcal{P}^{\Delta_{s,1}} = \mathcal{P}^{p^s},$$

$$\mathcal{P}^{\Delta_{s,i}} = \mathcal{P}^{p^s q^{i-1}} \mathcal{P}^{\Delta_{s,i-1}} - \mathcal{P}^{\Delta_{s,i-1}} \mathcal{P}^{p^s q^{i-1}} \quad \text{for } i \ge 2.$$

Remark. Note that for all $s \in \mathbb{N}_0$ we have $\mathscr{P}^{\Delta_{s,i}} \in \mathcal{P}^*$ whenever $i \neq 0$.

Remark. Note also that the degree of $\mathscr{P}^{\Delta_{s,i}}$ is equal to $q^i p^s - p^s$, for all $i, s \in \mathbb{N}_0$.

Proposition 4.1. The operators $\mathscr{P}^{\Delta_{s,i}}$ satisfy the following properties:

- (1) For all $i \in \mathbb{N}$ we have $\mathscr{P}^{\Delta_{s,i}}(h^p) = (\mathscr{P}^{\Delta_{s-1,i}}(h))^p$ for $h \in H$ and $s \ge 1$.
- (2) For $i \ge 1$ and $k, s \ge 0$ we have

$$[\mathscr{P}^{p^sk},\mathscr{P}^{\Delta_{s,i}}]=\mathscr{P}^{\Delta_{s,i+1}}\mathscr{P}^{p^sk-p^sq^i}.$$

(3) For $i, j \ge 1$ and $s \ge 0$ we have

$$[\mathcal{P}^{\Delta_{s,i}}, \mathcal{P}^{\Delta_{s,j}}] = 0.$$

(4) The pth iteration $\mathscr{P}^{\Delta_{s,i}} \cdots \mathscr{P}^{\Delta_{s,i}} = 0$ for all $i \geq 1$ and $s \geq 0$.

Proof. AD(1): For any $i, j \geq 0$ and any linear form l we have

$$\mathscr{P}^i(l^j) = \binom{j}{i} l^{iq+j-i}$$

as it can be easily seen by induction. Thus for all $i \geq 0$ we have

$$\mathscr{P}^i(l^{p^s}) = \binom{p^s}{i} \, l^{iq+p^s-i}.$$

Since $\binom{p^s}{i} \equiv 0$ (p) precisely when $i \notin \{p^s, 0\}$, we have

$$\mathscr{P}^{i}(l^{p^{s}}) = \begin{cases} \mathscr{P}^{0}(l)p^{s} & \text{for } i = 0, \\ \mathscr{P}^{1}(l)^{p^{s}} & \text{for } i = p^{s}, \\ 0 & \text{otherwise.} \end{cases}$$

Therefore

$$\mathscr{P}^{i}(h^{p^{s}}) = \begin{cases} h^{p^{s}} & \text{for } i = 0, \\ \mathscr{P}^{k}(h)^{p^{s}} & \text{for } i = kp^{s}, \\ 0 & \text{otherwise,} \end{cases}$$

for any $h \in H$ (cf. page 261 of [6]). Thus

$$\mathscr{P}^{\Delta_{s,1}}(h^p) = \mathscr{P}^{p^s}(h^p) = (\mathscr{P}^{p^{s-1}}(h))^p = (\mathscr{P}^{\Delta_{s-1,1}}(h))^p.$$

Thus by induction on i we find

$$\begin{split} \mathscr{P}^{\Delta_{s,i}}(h^p) &= \mathscr{P}^{p^sq^{i-1}} \mathscr{P}^{\Delta_{s,i-1}}(h^p) - \mathscr{P}^{\Delta_{s,i-1}} \mathscr{P}^{p^sq^{i-1}}(h^p) \\ &= \mathscr{P}^{p^sq^{i-1}} (\mathscr{P}^{\Delta_{s-1,i-1}}(h))^p - \mathscr{P}^{\Delta_{s,i-1}} (\mathscr{P}^{p^{s-1}q^{i-1}}(h))^p \\ &= (\mathscr{P}^{p^{s-1}q^{i-1}} \mathscr{P}^{\Delta_{s-1,i-1}}(h) - \mathscr{P}^{\Delta_{s-1,i-1}} \mathscr{P}^{p^{s-1}q^{i-1}}(h))^p \\ &= (\mathscr{P}^{\Delta_{s-1,i}}(h))^p, \end{split}$$

as claimed.

AD(2) and (3): The result follows, because it is true for any linear form.

AD(4): From the Adem relations it follows that

$$\mathscr{P}^{p^s}\cdots\mathscr{P}^{p^s}=0.$$

Thus the result follows by induction on i with the help of the commutation rules of (2) (cf. Lemma A.1.1 in [3]).

Define the H^{p^s} -module

$$\operatorname{Der}_{\mathbf{H},s} = \operatorname{span}_{\mathbf{H}^{p^s}} \{ \mathscr{P}^{\Delta_{s,i}} \mid i \in \mathbb{N}_0 \}.$$

By definition it follows that $Der_{H,0} = Der_{H}$.

Proposition 4.2. The module $Der_{H,s}$ has the following properties:

- (1) $\operatorname{Der}_{H,s}$ acts in H^{p^s} as derivations.
- (2) For $s, k \ge 0$ we obtain

$$[\mathscr{P}^{p^s k}, \mathscr{P}^{\Delta_{s,0}}] = k \mathscr{P}^{kp^s}.$$

(3) If $s \geq 0$, then

$$[\mathscr{P}^{\Delta_{s,i}},\mathscr{P}^{\Delta_{s,j}}] = \begin{cases} \mathscr{P}^{\Delta_{s,i}} & \text{if } i \neq 0 \text{ and } j = 0, \\ -\mathscr{P}^{\Delta_{s,j}} & \text{if } i = 0 \text{ and } j \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

- (4) The pth iteration gives $\mathscr{P}^{\Delta_{s,0}}\cdots\mathscr{P}^{\Delta_{s,0}}(h^{p^s})=\mathscr{P}^{\Delta_{s,0}}(h^{p^s})$ for all $s\geq 0$ and $h\in H$.
 - (5) Let $s \ge 0$. Then $\mathscr{P}^{\Delta_{s,i}}(h^{p^s}) = 0 \ \forall i \ if \ and \ only \ if \ h \ is \ a \ p^{s+1}st \ power.$

Proof. AD(1): Let $h^{p^s} \in H^{p^s}$. By Proposition 4.1 Der_{H,s} acts on H^{p^s} according to the following formulae:

$$\begin{split} \mathscr{P}^{\Delta_{s,0}}(h^{p^s}) &= \deg(h)h^{p^s} = \mathscr{P}^{\Delta_0}(h)^{p^s}, \\ \mathscr{P}^{\Delta_{s,1}}(h^{p^s}) &= (\mathscr{P}^1(h))^{p^s} = (\mathscr{P}^{\Delta_1}(h))^{p^s}, \\ \mathscr{P}^{\Delta_{s,i}}(h^{p^s}) &= (\mathscr{P}^{q^{i-1}}\mathscr{P}^{\Delta_{i-1}} - \mathscr{P}^{\Delta_{i-1}}\mathscr{P}^{q^{i-1}}(h))^{p^s} = (\mathscr{P}^{\Delta_i}(h))^{p^s}. \end{split}$$

Since taking pth powers is additive in characteristic p, this establishes the statement.

AD(2): Let $h^{p^s} \in H^{p^s}$. We have

$$[\mathscr{P}^{p^sk}, \mathscr{P}^{\Delta_{s,0}}](h^{p^s}) = \mathscr{P}^{p^sk} \mathscr{P}^{\Delta_{s,0}}(h^{p^s}) - \mathscr{P}^{\Delta_{s,0}} \mathscr{P}^{p^sk}(h^{p^s})$$

$$= \deg(h) \mathscr{P}^{p^sk}(h^{p^s}) - \mathscr{P}^{\Delta_{s,0}} (\mathscr{P}^k(h))^{p^s}$$

$$= \deg(h) \mathscr{P}^{p^sk}(h^{p^s}) - \deg(\mathscr{P}^k(h)) \mathscr{P}^{p^sk}(h^{p^s})$$

$$= (\deg(h) - \deg(h) + k - kq) \mathscr{P}^{p^sk}(h^{p^s})$$

$$= k \mathscr{P}^{p^sk}(h^{p^s}).$$

AD(3): Let $h^{p^s} \in H^{p^s}$. If $i, j \ge 1$, then

$$[\mathscr{P}^{\Delta_{s,0}}, \mathscr{P}^{\Delta_{s,j}}] = 0$$

by part (3) of Proposition 4.1. Otherwise we have

$$\begin{split} [\mathscr{P}^{\Delta_{s,0}},\mathscr{P}^{\Delta_{s,j}}](h^{p^s}) &= \mathscr{P}^{\Delta_{s,0}}\mathscr{P}^{\Delta_{s,j}}(h^{p^s}) - \mathscr{P}^{\Delta_{s,j}}\mathscr{P}^{\Delta_{s,0}}(h^{p^s}) \\ &= (\deg(h) + q^j - 1)\mathscr{P}^{\Delta_{s,j}}(h^{p^s}) - \deg(h)\mathscr{P}^{\Delta_{s,j}}(h^{p^s}) \\ &= -\mathscr{P}^{\Delta_{s,j}}(h^{p^s}). \end{split}$$

The relation for j = 0 can be established in the same way.

AD(4): Let $h^{p^s} \in H^{p^s}$. Since $\mathscr{P}^{\Delta_{s_0}}(h^{p^s}) = \deg(h)h^{p^s}$ and $\deg(h)^{p^s} = \deg(h)$ the result follows.

Ad(5): Let $h^{p^s} = H^{p^s}$ and $i \ge 1$. Then

$$\mathscr{P}^{\Delta_{s,i}}(h^{p^s}) = (\mathscr{P}^{\Delta_i}(h))^{p^s}$$

and

$$\mathscr{P}^{\Delta_{s,0}}(h^{p^s}) = \deg(h)h^{p^s} = \mathscr{P}^{\Delta_0}(h)^{p^s}$$

are simultaneously zero for all i if and only if

$$\mathscr{P}^{\Delta_i}(h) = 0$$

for all $i \geq 0$, i.e., if and only if h is a pth power; hence precisely when h^{p^s} is a p^{s+1} st power.

Thus $Der_{H,s}$ is a restricted Lie algebra of derivations acting on H^{p^s} vanishing precisely on the p^{s+1} st powers. We need to have a look at the relation between $Der_{H,s}$ and Der_{H} .

Proposition 4.3. Let H be an unstable reduced Noetherian algebra over the Steenrod algebra. The action of $\operatorname{Der}_{H,s}$ on H^{p^s} has the following properties:

(1) For any $d_s \in \text{Der}_{H,s}$ there exists $a \ d \in \text{Der}_H$ such that

$$d_s(h^{p^s}) = d(h)^{p^s} \quad \forall h \in \mathbf{H}.$$

(2) If there are m derivations in $Der_{H,s}$ that are linearly dependent, then so are any m derivations.

Proof. AD(1): For any

$$d_s = h_0^{p^s} \mathscr{P}^{\Delta_{s,i_0}} + \dots + h_l^{p^s} \mathscr{P}^{\Delta_{s,i_l}} \in \mathrm{Der}_{\mathrm{H},s}$$

we find that

$$d_s = (d)^{p^s} = (h_0 \mathscr{P}^{\Delta_{i_0}} + \dots + h_l \mathscr{P}^{\Delta_{i_l}})^{p^s}$$

by part (1) of Proposition 4.1. By construction $d \in Der_H$.

AD(2): Let $d_{s,1}, \ldots, d_{s,m} \in \operatorname{Der}_{H,s}$ be linearly dependent. By part (1) we find $d_1, \ldots, d_m \in \operatorname{Der}_H$ such that $(d_i(h))^{p^s} = d_{s,i}(h^{p^s})$ for all $h \in H$. Thus the elements $d_1, \ldots, d_m \in \operatorname{Der}_H$ are linearly dependent. Therefore any m elements, say d'_1, \ldots, d'_m , of Der_H are linearly dependent with a relation

$$h_1d_1'\cdots+h_md_m'=0.$$

Thus

$$h_1^{p^s} d'_{s,1} + \dots + h_m^{p^s} d'_{s,m} = 0$$

is a relation in $Der_{H,s}$.

Thus the minimal l_s such that l_s+1 elements of $\mathrm{Der}_{H,s}$ are linearly dependent is uniquely defined. We call l_s the Δ_s -length of H^{p^s} , denoted by $\lambda_{H,s}$ or if no confusion can arise by λ_s . If $\lambda_s \in \mathbb{N}_0$, we call the algebra H^{p^s} Δ_s -finite. Note that by construction H is Δ -finite if and only if H^{p^s} is Δ_s -finite.

Proposition 4.4. Let H be an unstable reduced Δ -finite algebra over the Steenrod algebra. Let λ be its Δ -length and λ_s the Δ_s -length of H^{p^s} . Then

- (1) $\lambda_s = \lambda$.
- (2) We have a relation of the form

$$\mathbf{d}_s = \mathbf{d}_{\lambda_s,0}^{p^s} \mathscr{P}^{\Delta_{s,0}} + \cdots + \mathbf{d}_{\lambda_s,\lambda_s}^{p^s} \mathscr{P}^{\Delta_{s,\lambda_s}}$$

on H^{p^s} .

Proof. AD(1): Let

$$d = \mathbf{d}_{\lambda,0} \mathscr{P}^{\Delta_0} + \dots + (-1)^{\lambda} \mathbf{d}_{\lambda,\lambda} \mathscr{P}^{\Delta_{\lambda}} = \mathrm{Der}_{\mathrm{H}}$$

be the Δ -relation of H. Then the element $d_s(h^{p^s}) = (d(h))^{p^s}$ of $\mathrm{Der}_{H,s}$ vanishes on H^{p^s} . Thus $\lambda_s \leq \lambda$. Conversely, if

$$d_s = h_0^{p^s} \mathscr{P}^{\Delta_{s,0}} + \dots + h_{\lambda_s}^{p^s} \mathscr{P}^{\Delta_{s,\lambda_s}} \in \mathrm{Der}_{\mathrm{H},s}$$

is a Δ_s -relation of H^{p^s} , then the element

$$d = h_0 \mathscr{P}^{\Delta_0} + \dots + h_{\lambda_s} \mathscr{P}^{\Delta_{\lambda_s}} \in \mathrm{Der}_{\mathrm{H}}$$

vanishes on H, by part (1) of Proposition 4.3. Thus, also, $\lambda \leq \lambda_s$.

AD(2): By (1) λ_s is the Δ -length of H. Therefore

$$\mathbf{d} = \mathbf{d}_{\lambda_0,0} \mathscr{P}^{\Delta_0} + \cdots + \mathbf{d}_{\lambda_0,\lambda_0} \mathscr{P}^{\Delta_{\lambda_0}}$$

is the Δ -relation on H. Thus the result follows by part (1) of Proposition 4.3. \square

We call the relation \mathbf{d}_s of part (2) of this result the Δ_s -relation of \mathbf{H}^{p_s} .

Let $\operatorname{H}^{p^s} \hookrightarrow \mathbb{F}[V]^{p^s}$ with Δ_s -length λ_s . Then $\operatorname{H} = \operatorname{H}_s^{p^s} \hookrightarrow \mathbb{F}[V]$, since $\operatorname{H}_s^{p^s}$ arises from H^{p^s} by adjoining all p^s th roots. Let H have Δ -length λ . Thus $\lambda = \lambda_s \leq n$ by Proposition 4.4, part (1).

Proposition 4.5. For $s \ge 0$ we have

$$(\mathcal{C}_{\mathrm{Der}_{\mathbf{H}}}(\mathbf{H}))^{p^s} = \mathcal{C}_{\mathrm{Der}_{\mathbf{H},s}}(\mathbf{H}^{p^s}) \subseteq \mathcal{C}_{\mathrm{Der}_{\mathbf{H}}}(\mathbf{H}).$$

Proof. If $h^{p^s} \in H^{p^s}$ is a $\operatorname{Der}_{H,s}$ -constant, then h is a p^{s+1} st power by part (5) of Proposition 4.2. Thus there exists an element $k \in H_1^{p^s} = H^{p^{s-1}}$ such that $k^p = h^{p^s}$. Hence $h^{p^s} = k^p \in H_1^{p^s} \subseteq H$ is a pth power, i.e., a Der_{H} -constant.

In order to prove the equality, let $h \in H$ be a Der_H-constant, i.e., d(h) = 0 for all $d \in \text{Der}_H$. For any $d_s \in \text{Der}_{H,s}$ there is an element $d \in \text{Der}_H$ such that $d_s(h^{p^s}) = (d(h))^{p^s} = 0$ by part (1) of Proposition 4.3. Thus $(\mathcal{C}_{\text{Der}_H}(H))^{p^s} \subseteq \mathcal{C}_{\text{Der}_{H,s}}(H^{p^s})$. Conversely, if $h^{p^s} \in \mathcal{C}_{\text{Der}_{H,s}}(H^{p^s})$, then $h \in \mathcal{C}_{\text{Der}_H}(H)$, by what we have proven so far. Thus $h^{p^s} \in (\mathcal{C}_{\text{Der}_H}(H))^{p^s}$ as desired.

Remark. We note that the preceding results imply that

$$\dim(\operatorname{Der}_{\mathbb{F}[V],s}) = \dim(\operatorname{Der}_{\mathbb{F}[V]}) = \dim_{\mathbb{F}}(V) = n.$$

Remark. In Section 3 we defined $Der_{\mathbb{H}}$ for $\mathbb{H} = FF(H)$ for integral domains H. In the same way we define

$$\operatorname{Der}_{\mathbb{H},s} = \operatorname{span}_{\mathbb{H}^{\rho^s}} \{ \mathscr{P}^{\Delta_{i,s}} \mid i \in \mathbb{N}_0 \}.$$

We obtain analogously to Proposition 3.5 that $\dim(\operatorname{Der}_{\mathbb{H},s}) = \dim(\operatorname{Der}_{\mathbb{H},s})$. Hence, $\lambda_{\mathbb{H},s} = \lambda_{\mathbb{H},s}$ and $\mathbf{d}_{\mathbb{H},s} = \mathbf{d}_{\mathbb{H},s}$. Therefore $\operatorname{Der}_{\mathbb{H},s}$ and $\operatorname{Der}_{\mathbb{H},s}$ have basis $\{\mathscr{P}^{\Delta_{s,0}},\ldots,\mathscr{P}^{\Delta_{s,\lambda_s}}\}$, where $\lambda_s = \lambda_{\mathbb{H},s} = \lambda_{\mathbb{H},s}$.

Corollary 4.6. The Δ_s -length of $\mathbb{F}[V]^{p^s}$, resp. $\mathbb{F}(V)^{p^s}$, is equal to the dimension of V. Moreover, for $D_s = 0$

$$\mathbb{F}[V]^{p^s} = \mathcal{C}_{D_s}(\mathbb{F}[V]^{p^s}), \quad resp. \ \mathbb{F}(V)^{p^s} = \mathcal{C}_{D_s}(\mathbb{F}(V)^{p^s}).$$

Finally, the Δ_s -length of $\mathbb{F}[V]^{p^{s+1}}$, resp. $\mathbb{F}(V)^{p^{s+1}}$, is zero, and

$$\mathbb{F}[V]^{p^{s+1}} = \mathcal{C}_{\mathrm{Der}_{\mathbb{F}[V]}} (\mathbb{F}[V]^{p^s}), \quad resp. \ \mathbb{F}(V)^{p^{s+1}} = \mathcal{C}_{\mathrm{Der}_{\mathbb{F}[V]}} (\mathbb{F}(V)^{p^s}).$$

Proof. The first statement follows from Lemma 3.8 and Proposition 4.5. The second statement follows from Corollaries 3.2 and 3.9 and Proposition 4.5. \Box

We need a generalization of Lemma 3.7.

Lemma 4.7. Let $K^{p^s} \subseteq H^{p^s}$ be unstable reduced Noetherian algebras over the Steenrod algebra. Denote by $\lambda_{K,s}$, resp. $\lambda_{H,s}$, the Δ_s -length of K^{p^s} , resp. H^{p^s} . Then $\lambda_{K,s} \leq \lambda_{H,s}$.

Proof. The proof works just as the one of Lemma 3.7.

Proposition 4.8. Let t > s and $W \leq V$. The Δ_s -length of $\mathbb{F}[W]^{p^s} \otimes \mathbb{F}[V/W]^{p^t}$ as well as of $\mathbb{F}(W)^{p^s} \otimes \mathbb{F}(V/W)^{p^t}$, is equal to $\lambda_s = \dim_{\mathbb{F}}(W)$. Moreover, let $H^{p^s} \hookrightarrow \mathbb{F}[V]^{p^s}$. Then the Δ_s -length of H^{p^s} is at most l if and only if

$$\mathbf{H}^{p^s} \subseteq \mathbb{F}[W]^{p^s} \otimes \mathbb{F}[V/W]^{p^t},$$

where $\dim_{\mathbb{F}}(W) = l$ and t > s.

Proof. The first statement follows from Proposition 4.4, Lemma 3.8, and Corollary 3.9. If $\operatorname{H}^{p^s} \subseteq \mathbb{F}[W]^{p^s} \otimes \mathbb{F}[V/W]^{p^t}$, then by Lemma 4.7 its Δ_s -length is at most the Δ_s -length of $\mathbb{F}[W]^{p^s} \otimes \mathbb{F}[V/W]^{p^t}$, which is l by what we proved so far.

Conversely, let the Δ_s -length of H^{p^s} be $\lambda_s \leq l$. Then H has Δ -length $\lambda = \lambda_s$ by Proposition 4.4. Thus its Δ -relation is

$$\mathbf{d} = \mathbf{d}_{\lambda,0} \mathscr{P}^{\Delta_0} + \cdots \mathbf{d}_{\lambda,\lambda} \mathscr{P}^{\Delta_{\lambda}}$$

and therefore the Dickson algebra of dimension λ is contained in H.

$$\mathcal{D}(\lambda) \hookrightarrow \mathcal{H} \hookrightarrow \mathbb{F}[U] \otimes \mathbb{F}[V/U]$$

for some $U \leq V$ with $\dim(U) = \lambda$. But $\mathbb{F}[U] \otimes \mathbb{F}[V/U]^p$ is the largest subalgebra of $\mathbb{F}[V]$ with Δ -length λ by Corollary 3.14. Thus

$$\mathbf{H} \hookrightarrow \mathbb{F}[U] \otimes \mathbb{F}[V/U]^p \hookrightarrow \mathbb{F}[W] \otimes \mathbb{F}[V/W]^p$$

and the result follows.

Lemma 4.9. We have

$$FF(\mathcal{C}_{\operatorname{Der}_{\mathbb{H},s}}(\operatorname{H}^{p^s})) = \mathcal{C}_{\operatorname{Der}_{\mathbb{H},s}}(\mathbb{H}^{p^s}).$$

Proof. This follows from Propositions 4.5 and 2.3.

In order to be able to treat the general case, we need another preliminary result.

Proposition 4.10. Let $V = W_0 \oplus \cdots \oplus W_e$ be a vector space decomposition. Consider the purely inseparable extension $H^{p^{s_0}} \hookrightarrow \mathbb{F}[W_0]^{p^{s_0}} \otimes \cdots \otimes \mathbb{F}[W_e]^{p^{s_e}}$. Let $s_0 < \cdots < s_e$. Let $H^{p^{s_0}}$ be an integrally closed unstable algebra over the Steenrod algebra. Then the Δ_{s_0} -length of $H^{p^{s_0}}$ is λ_{s_0} if and only if

$$\mathbb{F}[U_0]^{p^{s_0}} \hookrightarrow \mathbb{H}^{p^{s_0}} \hookrightarrow \mathbb{F}[U-0]^{p^{s_0}} \otimes \mathbb{F}[W_0/U_0]^{p^{s_0+1}} \otimes \mathbb{F}[W_1]^{p^{s_1}} \otimes \cdots \otimes \mathbb{F}[W_e]^{p^{s_e}}$$

for $\dim_{\mathbb{F}}(U_0) = \lambda_{s_0}$, $U_0 \leq W_0$ and U_0 maximal with respect to this property.

Proof. Let the Δ_{s_0} -length of $H^{p_{s_0}}$ be λ_{s_0} . Note that $\lambda_{s_0} \leq \dim_{\mathbb{F}}(W_0)$ by Lemma 4.7. The Δ -length of H is also λ_{s_0} by part (1) of Proposition 4.4. Moreover

$$\mathcal{H} \hookrightarrow \mathbb{F}[W_0] \otimes \mathbb{F}[W_1]^{p^{s_1-s_0}} \otimes \cdots \otimes \mathbb{F}[W_e]^{p^{s_e-s_0}}.$$

Let **d** be the Δ -relation of H. Then **d** is also the Δ -relation of its field of fractions, \mathbb{H} . Thus by construction we find for $D = D_{\mathbb{H}} \subseteq Der_{\mathbb{H}}$

$$\mathbb{H} \hookrightarrow \mathcal{C}_{\mathcal{D}}(\mathbb{F}(W_0) \otimes \mathbb{F}(W_1)^{p^{s_1-s_0}} \otimes \cdots \otimes \mathbb{F}(W_e)^{p^{s_e-s_0}})$$

$$= \mathbb{F}(U_0) \otimes \mathbb{F}(W_0/U_0)^p \otimes \mathbb{F}(W_1)^{p^{s_1-s_0}} \otimes \cdots \otimes \mathbb{F}(W_e)^{p^{s_e-s_0}}$$

for some $U_0 \leq W_0$ of dimension λ_{s_0} by Corollary 3.9. Let U be maximal with this property. The extension

$$\mathbb{F}(U_0) \cap \mathbb{H} \hookrightarrow \mathbb{F}(U_0)$$

is purely inseparable, since

$$\mathbb{H} \hookrightarrow \mathbb{F}(U_0) \otimes \mathbb{F}(W_0/U_0)^p \otimes \mathbb{F}(W_1)^{p^{s_1-s_0}} \otimes \cdots \otimes \mathbb{F}(W_e)^{p^{s_e-s_0}}$$

is purely inseparable and all elements in $\mathbb{F}(U_0) \otimes \mathbb{F}(W_0/U_0)^p \otimes \mathbb{F}(W_1)^{p^{s_1-s_0}} \otimes \cdots \otimes \mathbb{F}(W_e)^{p^{s_e-s_0}}$ that are algebraic over $\mathbb{F}(U_0)$ are inseparable. By maximality of λ_{s_0} all elements in $\mathbb{F}(U_0)$ are separable over \mathbb{H} . Thus

$$\mathbb{F}(U_0) \cap \mathbb{H} \hookrightarrow \mathbb{F}(U_0)$$

is also separable. Hence

$$\mathbb{F}(U_0) = \mathbb{F}(U_0) \cap \mathbb{H} \hookrightarrow \mathbb{H}.$$

Therefore

$$\mathbb{F}[U_0]^{p^{s_0}} \hookrightarrow \mathrm{H}^{p^{s_0}} \hookrightarrow \mathbb{F}[U_0]^{p^{s_0}} \otimes \mathbb{F}[W_0/U_0]^{p^{s_0+1}} \otimes \cdots \otimes \mathbb{F}[W_e]^{p^{s_e}}$$

as desired.

To prove the converse, assume that there exists a vector space $U_0 \leq W_0$ of $\dim_{\mathbb{F}}(U_0) = \lambda_{s_0}$ such that

$$\mathbb{F}[U_0]^{p^{s_0}} \hookrightarrow \mathrm{H}^{p^{s_0}} \hookrightarrow \mathbb{F}[U_0]^{p^{s_0}} \otimes \mathbb{F}[W_0/U_0]^{p^{s_0+1}} \otimes \cdots \otimes \mathbb{F}[W_e]^{p^{s_e}}.$$

Assume furthermore that U_0 is maximal with this property. Then the Δ_{s_0} -length of $\mathbb{F}[U_0]^{p^{s_0}}$ is $\lambda_{s,0}$ by Corollary 4.6. Equally, the Δ_{s_0} -length of $\mathbb{F}[U_0]^{p^{s_0}} \otimes \mathbb{F}[W_0/U_0]^{p^{s_0+1}} \otimes \cdots \otimes \mathbb{F}[W_e]^{p^{s_e}}$ is λ_{s_0} by Proposition 4.8. Therefore the Δ_{s_0} -length of $H^{p^{s_0}}$ is λ_{s_0} by Lemma 4.7.

Remark. Note that any element in $\mathbb{H}^{p^{s_0}}$ that is algebraic over $\mathbb{F}[U_0]^{p^{s_0}}$ is separable over $\mathbb{F}[U_0]^{p^{s_0}}$.

Theorem 4.11. Let $V = W_0 \oplus \cdots \oplus W_e$ be a vector space decomposition. Consider the purely inseparable extension $H \hookrightarrow \mathbb{F}[W_0] \otimes \mathbb{F}[W_1]^p \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e}$ of exponent one. Let H be integrally closed. Then H is an unstable algebra over the Steenrod algebra if and only if

$$\mathbf{H} = \mathbb{F}[U_0] \otimes \mathbb{F}[U_1]^p \otimes \cdots \otimes \mathbb{F}[U_{e+1}]^{p^{e+1}}$$

for some vector space decomposition

$$V = U_0 \oplus \cdots \oplus U_{e+1}$$

with

$$U_0 \oplus \cdots \oplus U_i \leq W_0 \oplus \cdots \oplus W_i$$

and dim $(U_0 \oplus \cdots \oplus U_i)$ is the Δ -length of H_i , $i = 0, \ldots, e+1$.

Proof. The "if" part of the statement is clear by Proposition 4.10. We need to prove the "only if" part.

Let $\mathbf{d} \in \operatorname{Der}_{H}$ be the Δ -relation on H of length λ_{0} . Then $\mathbb{F}[U_{0}] \hookrightarrow H$ for some vector space U_{0} of dimension λ_{0} by Proposition 4.10. Hence $\lambda_{0} \leq \dim(W_{0})$, $U_{0} \leq W_{0}$, and we have

$$\mathbb{F}[U_0] \hookrightarrow \mathcal{H} \hookrightarrow \mathbb{F}[W_0] \otimes \mathbb{F}[W_1]^p \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e}.$$

We consider the chain

$$\mathbb{F}[U_0]_1 \hookrightarrow \mathcal{H}_1 \hookrightarrow (\mathbb{F}[W_0] \otimes \mathbb{F}[W_1]^p \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e})_1$$

$$= \mathbb{F}[W_0 \oplus W_1] \otimes \mathbb{F}[W_2]^p \otimes \cdots \otimes \mathbb{F}[W_e]^{p^{e-1}}.$$

By Proposition 4.10 the Δ -length of H_1 is at most the dimension of $W_0 \oplus W_1$ and

$$\mathbb{F}[U_0] \otimes \mathbb{F}[U_1] \hookrightarrow \mathbb{H}_1$$

for a suitable $U_0 \oplus U_1 \leq W_0 \oplus W_1$. Since $\mathbb{F}[U_0] \hookrightarrow H_1$, and U_0 is the maximal vector subspace with this property, we have

$$\mathbb{F}[U_0] \otimes \mathbb{F}[U_1]^p \hookrightarrow H.$$

Proceeding inductively gives an extension

$$\mathbb{F}[U_0] \otimes \mathbb{F}[U_1]^p \otimes \cdots \otimes \mathbb{F}[U_{e+1}]^{p^{e+1}} \hookrightarrow H,$$

which is separable, because it is algebraic (cf. the remark after Proposition 4.10). This extension is also purely inseparable because

$$\mathbb{F}[U_0] \otimes \mathbb{F}[U_1]^p \otimes \cdots \otimes \mathbb{F}[U_{e+1}]^{p^{e+1}} \hookrightarrow \mathbb{F}[W_0] \otimes \mathbb{F}[W_1]^p \otimes \cdots \otimes \mathbb{F}[W_{e+1}]^{p^{e+1}}$$

is purely inseparable. Thus

$$\mathbf{H} = \mathbb{F}[U_0] \otimes \mathbb{F}[U_1]^p \otimes \cdots \otimes \mathbb{F}[U_{e+1}]^{p^{e+1}}$$

as desired. \Box

Corollary 4.12. Let $V = W_0 \oplus \cdots \oplus W_e$ be a vector space decomposition. Let $\mathbb{H} \hookrightarrow \mathbb{F}(W_0) \otimes \mathbb{F}(W_1)^p \otimes \cdots \otimes \mathbb{F}(W_e)^{p^e}$ be a purely inseparable extension of exponent one. Then \mathbb{H} is a field over the Steenrod algebra if and only if

$$\mathbb{H} = \mathbb{F}(U_0) \otimes \mathbb{F}(U_1)^p \otimes \cdots \otimes \mathbb{F}(U_{e+1})^{p^{e+1}}$$

for some vector space decomposition

$$V = U_0 \oplus \cdots \oplus U_{e+1}$$

with

$$U_0 \oplus \cdots \oplus U_i \leq W_0 \oplus \cdots \oplus W_i$$

and $\dim(U_0 \oplus \cdots \oplus U_i)$ is the Δ -length of \mathbb{H}_i , $i = 0, \ldots, e+1$.

Proof. Since

$$\mathcal{U}n(\mathbb{H}) \hookrightarrow \mathbb{F}[U_0] \otimes \mathbb{F}[U_1]^p \otimes \cdots \otimes \mathbb{F}[U_e]^{p^e}$$

is integrally closed and $FF(Un(\mathbb{H})) = \mathbb{H}$, the result follows from Theorem 4.11. \square

Theorem 4.13. $\mathbb{H} \hookrightarrow \mathbb{F}(V)$ is a purely inseparable extension of exponent e of fields over the Steenrod algebra if and only if

$$\mathbb{H} = \mathbb{F}(W_0) \otimes \mathbb{F}(W_1)^p \otimes \cdots \otimes \mathbb{F}(W_e)^{p^e}$$

for some vector space decomposition

$$V = W_0 \oplus \cdots \oplus W_e$$
,

where $\dim(W_0 \oplus \cdots \oplus W_i)$ is the Δ -length of \mathbb{H}_i , $i = 0, \ldots, e$.

Proof. The "if" part is clear by Corollary 4.12. We show the "only if" part.

We proceed by induction on e. The case e=1 has been treated in Theorem 4.11. Thus assume that e>1.

We have a chain of purely inseparable extensions of exponent one

$$\mathbb{H} = \mathbb{H}_0 \hookrightarrow \mathbb{H}_1 \hookrightarrow \cdots \hookrightarrow \mathbb{H}_e = \mathbb{F}(V)$$

which is obtained by adjoining successively pth roots. Note that all \mathbb{H}_i 's are fields over the Steenrod algebra.

By the induction hypothesis we can assume that

$$\mathbb{H} \hookrightarrow \mathbb{H}_1 = \mathbb{F}(W_0) \otimes \mathbb{F}(W_1)^p \otimes \cdots \otimes \mathbb{F}(W_{e-1})^{p^{e-1}}$$

for a vector space decomposition

$$V = W_0 \oplus \cdots \oplus W_{e-1}$$
.

By Corollary 4.12 we are done.

At the level of algebras we obtain the following result as an obvious corollary.

Corollary 4.14. Let H be integrally closed. Let $H \hookrightarrow \mathbb{F}[V]$ be a purely inseparable extension of exponent e. Then H is an algebra over the Steenrod algebra if and only if

$$\mathbf{H} = \mathbb{F}[W_0] \otimes \mathbb{F}[W_1]^p \otimes \cdots \otimes \mathbb{F}[W_e^{p^e}]$$

for some vector space decomposition

$$V = W_0 \oplus \cdots \oplus W_e$$
,

where
$$\dim(W_0 \oplus \cdots \oplus W_i)$$
 is the Δ -length of H_i , $i = 0, \ldots, e$.

Remark. Note that Corollary 4.14 has been proven in Theorem 7.2.2 of [3] as well as in [7], Theorem II, without, however, the precise statement on the dimension of $W_0 \oplus \cdots \oplus W_i$.

5. Purely inseparable extensions, the general case

Let H be an unstable Noetherian integral domain over the Steenrod algebra. Assume that the canonical inclusion

$$H \hookrightarrow \sqrt[\mathcal{P}^*]{\overline{H}}$$

is purely inseparable of exponent e.

If H is integrally closed, then so is $\sqrt[p^*]{H}$ by part (3) of Proposition 2.1. Then

$$\sqrt[\mathcal{P}^*]{\mathbf{H}} \hookrightarrow \mathbb{F}[V]$$

is a Galois extension with Galois group $G \leq GL(n, \mathbb{F})$, where n is the Krull dimension of H (see the Galois Embedding Theorem, Theorem 7.1.1 in [3]). Thus

$$\sqrt[\mathcal{P}^*]{\mathbf{H}} = \mathbb{F}[V]^G.$$

On the other hand we can take the separable closure first: The separable closure of $H \hookrightarrow \mathbb{F}[V]$ denoted by \overline{H}^{sep} is again an unstable algebra over the Steenrod algebra by the Separable Extension Lemma (Proposition 2.2.2 in [3]), since $\overline{H}^{sep} = Un(\overline{\mathbb{H}}^{sep})$. Thus we obtain a purely inseparable extension of exponent e

$$\overline{\mathbf{H}}^{sep} \hookrightarrow \mathbb{F}[V].$$

Therefore, by Corollary 4.14

$$\overline{\mathbf{H}}^{sep} = \mathbb{F}[W_0] \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e},$$

for some vector space decomposition $V = W_0 \oplus \cdots \oplus W_e$

We need a technical lemma.

Lemma 5.1. Let H be an unstable Noetherian integral domain over the Steenrod algebra. Then for all $i \in \mathbb{N}_0$ we have

$$(\overline{\mathbf{H}}^{sep})_i = \overline{(\mathbf{H}_i)}^{sep}.$$

Proof. By induction on i, we need to prove the statement only for i = 1. By assumption we have the diagram

If $h \in H_1$, then $h^p \in H \subseteq \overline{H}^{sep}$. Thus $h \in (\overline{H}^{sep})_1$. Thus

$$H_1 \hookrightarrow (\overline{H}^{sep})_1$$
.

We note that $\overline{\mathbf{H}}^{sep} = \mathbb{F}[W_0] \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e}$ by Corollary 4.14. Therefore

$$(\overline{\mathbf{H}}^{sep})_1 = \mathbb{F}[W_0 \oplus W_1] \otimes \mathbb{F}[W_2]^p \otimes \cdots \otimes \mathbb{F}[W_e]^{p^{e-1}}.$$

Hence $(\overline{\mathbf{H}}^{sep})_1$ is separably closed, and thus

$$\overline{(H_1)}^{sep} \hookrightarrow (\overline{H}^{sep})_1.$$

Moreover, this extension is by the universal property of the separable closure purely inseparable. Next we show that this extension has exponent at most one. To this end, take $h \in (\overline{H}^{sep})_1$. Then $h^p \in \overline{H}^{sep}$ is separable over H, hence over H₁. Therefore $h^p \in \overline{(\mathrm{H}_1)}^{sep}$.

Denote the inseparable closure of H_1 inside $(\overline{H}^{sep})_1$ by K. Then $H_1 \hookrightarrow K$ has exponent at most one, and since $\overline{H}^{sep} \hookrightarrow (\overline{H}^{sep})_1$ has exponent one, the extension $H \hookrightarrow K$ also has exponent at most one. Since H_1 is the largest algebra such that $H \hookrightarrow K$ has exponent one, we have that $H_1 = K$ and $H_1 \hookrightarrow (\overline{H}^{sep})_1$ is separable. Therefore, $\overline{(H_1)}^{sep} \hookrightarrow (\overline{H}^{sep})_1$ is also separable. Since we already saw that this

extension is purely inseparable, this means that

$$(\overline{H})^{\mathit{sep}})_1 = \overline{(H_1)}^{\mathit{sep}}$$

as claimed.

So, in what follows we can write $\overline{H_1}^{sep}$ for $\overline{(H_1)}^{sep} = (\overline{H}^{sep})_1$ without ambiguity.

Theorem 5.2. Let H be an integrally closed unstable Noetherian integral domain over the Steenrod algebra of Krull dimension n. Set $\dim_{\mathbb{F}}(V) = n$. Let $V = W_0 \oplus \cdots \oplus W_e$, and let

$$\overline{\mathbf{H}}^{sep} = \mathbb{F}[W_0] \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e}.$$

Then there exists a group $G \leq \operatorname{GL}(V)$ acting on the flags $W_0 \oplus \cdots \oplus W_i$ for $i = 0, \ldots, e$ such that $\sqrt[p^*]{\operatorname{H}} = \mathbb{F}[V]^G$ and

$$\mathbf{H} = (\mathbb{F}[W_0] \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e})^G.$$

Furthermore, $\dim_{\mathbb{F}}(W_0 \oplus \cdots \oplus W_i)$ is the Δ -length of H_i .

Proof. By assumption we have a diagram

where the horizontal extensions are purely inseparable and the vertical are separable. Recall that

$$\overline{\mathbf{H}}^{sep} = \mathbb{F}[W_0] \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e}$$

where $\dim_{\mathbb{F}}(W_0 \oplus \cdots \oplus W_i)$ is the Δ -length of $\overline{\mathbf{H}_i}^{sep}$ by Corollary 4.14. Consider the corresponding diagram of the respective field of fractions

$$\begin{array}{ccc}
\mathbb{H} & & & & \mathbb{F}(V)^G \\
\downarrow & & & & \downarrow \\
\mathbb{H}^{sep} & & & & \mathbb{F}(V).
\end{array}$$

Recall from the Imbedding Theorem (Theorem 8.1.5 in [3]) that H, and hence \mathbb{H} , contains a fractal of the Dickson algebra in dimension $n = \dim_{\mathbb{F}}(V)$. Thus

$$\mathfrak{D}(n)^{q^s} \hookrightarrow \mathcal{H} \hookrightarrow \mathbb{H} \hookrightarrow \mathbb{F}(V)$$

for some $s \in \mathbb{N}_0$. Therefore, the polynomial

$$\Delta(X) = \prod_{l \in V^*} (X - l)^{q^s} = \mathbf{d}_{n,0}^{q^s} X^{q^s} - \mathbf{d}_{n,1}^{q^s} X^{q^{s+1}} + \dots + (-1)^n \mathbf{d}_{n,n}^{q^s} X^{q^{n+s}}$$

has coefficients in \mathbb{H} (cf. Section 5.1 in [3]). Its roots are by construction the linear forms in $\mathbb{F}[V]$. Thus $\mathbb{F}(V)$ is the splitting field of $\Delta(X)$. Hence, the field extension $\mathbb{H} \hookrightarrow \mathbb{F}(V)$ is normal.⁷ Since $\overline{\mathbb{H}}^{sep} \hookrightarrow \mathbb{F}(V)$ is purely inseparable, it follows from the structure theorem for finite dimensional normal field extensions that the extension

$$\mathbb{H} \hookrightarrow \overline{\mathbb{H}}^{sep}$$

is Galois with some Galois group G'. We have

$$|G'| = |\overline{\mathbb{H}}^{sep} \colon \mathbb{H}| = |\mathbb{F}(V) \colon \mathbb{F}(V)^G| = |G|.$$

Since

$$\mathbb{H}=(\overline{\mathbb{H}}^{sep})^{G'}=\overline{\mathbb{H}}^{sep}\cap\mathbb{F}[V]^G$$

⁷Note that this means that $\mathbb{F}(V)$ is algebraically closed in the category of fields over the Steenrod algebra; cf. Section 3.2 in [3].

it follows that $G' \geq G$. Thus G' = G. Finally we show that the Δ -length of an unstable algebra H coincides with the Δ -length of its separable closure $(\overline{\mathbb{H}}^{sep})$. Together with Lemma 5.1 this gives the result.

To this end, let $l_i = \dim_{\mathbb{F}}(W_i)$. Since G acts on \overline{H}^{sep} , the group G consists of matrices of the form

where A_i is an $n_i \times n_i$ -matrix with $n_i = \dim(W_i)$. Denote by \widehat{G} the subgroup of $GL(n,\mathbb{F})$ consisting of all matrices of the form (+). Denote by x_1,\ldots,x_n a basis for $W_0 \oplus \cdots \oplus W_e$. Then

$$(\mathbb{F}[W_0] \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e})^{\widehat{G}}$$

$$= \mathcal{D}(n_0) \otimes \mathbb{F}[c_{\text{top}}(x_{n_0+1}^p), \dots, c_{\text{top}}(x_{n_1}^p), c_{\text{top}}(x_{n_1+1}^{p^2}), \dots, c_{\text{top}}(x_n^{p^e}),$$

where $c_{\text{top}}(-)$ denotes the top orbit Chern class of the element - (cf. Section 4.1 in [6]). By construction, the top orbit Chern classes of pth powers are pth powers. Thus the Δ -length of the ring of invariants \hat{G} is equal to n_0 . Therefore we have

$$(\mathbb{F}[W_0] \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e})^{\widehat{G}} \hookrightarrow \mathcal{H} = (\mathbb{F}[W_0] \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e})^G$$
$$\hookrightarrow \overline{\mathcal{H}}^{sep} = \mathbb{F}[W_0] \otimes \cdots \mathbb{F}[W_e]^{p^e}.$$

The smallest algebra, as well as the largest algebra in this chain, has Δ -length n_0 . Thus by Lemma 3.7 we are done.

Remark. Since G acts on $\overline{\mathbf{H}}^{sep}$, the group G consists of matrices of the form given in (+). So, if there exists no basis such that G consists of flag matrices like above, then the only unstable algebras $\mathbf{H} \hookrightarrow {}^{p^*}\!\sqrt{\mathbf{H}} = \mathbb{F}[V]^G$ are the p^s th powers

$$\mathbf{H} = (\mathbb{F}[V]^G)^{p^s},$$

i.e., we have the trivial vector space decomposition $V = W_e$.

Remark. Note carefully that the proof shows that the Δ -length of H and the Δ -length of any separable extension $H \hookrightarrow K$ coincide.

Remark. In Theorem 7.2.2 in [3] as well as in Theorem II in [8] it has been proven that

$$\mathbf{H} = (\mathbb{F}[W_0] \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e})^G.$$

However, the precise statement on the dimensions of $W_0 \oplus \cdots \oplus W_i$ is missing. Also the connection between the two Galois groups of $\mathbf{H} \hookrightarrow \mathbb{F}[W_0] \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e}$, resp. $\sqrt[p^*]{\mathbf{H}} \hookrightarrow \mathbb{F}[V]$, is not made.

We conclude this section with an example.

Example 5.3. Consider the regular representation of the cyclic group of order 2, $\mathbb{Z}/2$, over a field of characteristic 2 afforded by the matrix

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Set $\mathbb{F}[V] = \mathbb{F}[x, y]$. Its ring of invariants is

$$\mathbb{F}[x,y]^{\mathbb{Z}/2} = \mathbb{F}[x,y^2 - yx].$$

Then $\mathbb{Z}/2$ acts on $\mathbb{F}[x,y^2]$ with invariant ring

$$\mathbb{F}[x, y^2]^{\mathbb{Z}/2} = \mathbb{F}[x, (y^2 - yx)^2].$$

On the other hand, $\mathbb{Z}/2$ does not act on $\mathbb{F}[x^2, y]$. Indeed

$$\mathbb{F}[x,y]^{\mathbb{Z}/2} \cap \mathbb{F}[x^2,y] = \mathbb{F}[x^2,(y^2-yx)^2] = \mathbb{F}[x^2,y^2]^{\mathbb{Z}/2}.$$

Furthermore we could consider the purely inseparable field extension

$$\mathbb{F}(x^2, y^2 - yx) \hookrightarrow \mathbb{F}(x, y^2 + xy)$$

of degree 2. Note that

(*)
$$\mathscr{P}^{1}(y^{2} + xy) = x^{2}y + xy^{2} \notin \mathbb{F}(x^{2}, y^{2} - yx)$$

since our field contains only elements of even degree. Thus $\mathbb{F}(x^2, y^2 - yx)$ is not a field over the Steenrod algebra. Its separable closure

$$\mathbb{F}(x^2, y^2, yx) = \mathbb{F}\left(\frac{x}{y}, y^2\right)$$

is a Galois extension with the same Galois group $\mathbb{Z}/2$. However, the same calculation as above shows that it is also not closed under the action of the Steenrod algebra, as predicted in the previous result. Indeed, $\mathbb{F}(x,y)$ is the smallest overfield of $\mathbb{F}(x^2,y^2,yx)$, say \mathbb{K} , closed under the action of the Steenrod algebra as we see next:

$$\mathscr{P}^1(xy) = x^2y + xy^2 = xy(x+y) \in \mathbb{K} \Rightarrow x+y \in \mathbb{K}.$$

Since \mathbb{K} must have the form $\mathbb{F}(W) \otimes \mathbb{F}(V/W)^2$ for some $W \leq V$ we find that $\operatorname{span}_{\mathbb{F}}\{x+y\} \subseteq W$. The minimal polynomial of $x+y \in \mathbb{K}$ over $\mathbb{F}(x^2,y^2,xy)$,

$$p(X) = X^2 + (x^2 + y^2),$$

is inseparable of degree 2. Therefore

$$2 = |\mathbb{F}(x, y) \colon \mathbb{F}(x^2, y^2, xy) = |\mathbb{F}(x, y) \colon \mathbb{K}| \, |\mathbb{K} \colon \mathbb{F}(x^2, y^2, xy)| = 2|\mathbb{F}(x, y) \colon \mathbb{K}|,$$

and hence $\mathbb{F}(x,y) = \mathbb{K}$ as claimed.

On the other hand, the largest subfield, call in \mathbb{L} , of $\mathbb{F}(x^2, y^2, xy)$ that is closed under the Steenrod algebra is $\mathbb{F}(x^2, y^2)$: by Equation (*) the field \mathbb{L} does not contain xy. Since xy is the root of

$$p(X)=X^2+(xy)^2\in\mathbb{F}(x^2,y^2)[X]$$

we find that

$$2 = |\mathbb{F}(x^2, y^2, xy) \colon \mathbb{F}(x^2, y^2)| = |\mathbb{F}(x^2, y^2, xy) \colon \mathbb{L}| \, |\mathbb{L} \colon \mathbb{F}(x^2, y^2)| = 2|\mathbb{L} \colon \mathbb{F}(x^2, y^2)|$$
 and hence $\mathbb{L} = \mathbb{F}(x^2, y^2)$.

6. Projective dimension

The goal of this section is to prove that a Noetherian reduced unstable algebra H is Cohen-Macaulay if and only if its inseparable closure $\sqrt[p^*]{H}$ is Cohen-Macaulay.

Let H be an unstable algebra over the Steenrod algebra \mathcal{P}^* . An ideal $I \subseteq H$ is called \mathcal{P}^* -invariant if it is closed under the action of the Steenrod algebra.

Lemma 6.1. Let H be an unstable algebra over the Steenrod algebra. For any $s \in \mathbb{N}_0$, the canonical inclusion

$$\psi \colon \operatorname{H}^{p^s} \hookrightarrow \operatorname{H}$$

induces a bijection

$$\psi^* : \mathcal{P}roj_{\mathcal{P}^*}(\mathbf{H}) \to \mathcal{P}roj_{\mathcal{P}^*}(\mathbf{H}^{p^s})$$

between the spaces of homogeneous \mathfrak{P}^* -invariant prime ideals.

Proof. Since ψ is an integral extension, the Lying-Over Theorem holds. Thus ψ^* is surjective.

To prove injectivity take two homogeneous \mathcal{P}^* -invariant prime ideals $\mathfrak{p}_1,\mathfrak{p}_2\subseteq H,$ such that

$$\mathfrak{p}_1 \cap \mathcal{H}^{p^s} = \mathfrak{p}_2 \cap \mathcal{H}^{p^s}.$$

Thus for any $h \in \mathfrak{p}_1$ it follows that

$$h^{p^s} \in \mathfrak{p}_1 \cap \mathcal{H}^{p^s} = \mathfrak{p}_2 \cap \mathcal{H}^{p^s}.$$

Therefore

$$h^{p^s} \in (\psi(\mathfrak{p}_2 \cap \mathcal{H}^{p^s})) \subseteq \mathfrak{p}_2.$$

Since \mathfrak{p}_2 is prime, we find that $h \in \mathfrak{p}_2$. Interchanging the roles of \mathfrak{p}_1 and \mathfrak{p}_2 gives the result.

This result could have been proven also by observing that the sth iteration of the Frobenius map

$$F^s \colon \mathbf{H} \to \mathbf{H}^{p^s}$$

hands us an isomorphism of unstable algebras of degree p^s if H is reduced. This in turn also implies the following result.

Lemma 6.2. Let H be an unstable reduced algebra over the Steenrod algebra. For any $s \in \mathbb{N}_0$ we find that

$$depth(H) = depth(H^{p^s}).$$

We observe that H is Noetherian of Krull dimension n if and only if H^{p^s} is. We find the following lemma.

Lemma 6.3. Let H be Noetherian and reduced of Krull dimension n. Let $S = \mathbb{F}[h_1^{p^s}, \ldots, h_n^{p^s}]$ be a system of parameters in H^{p^s} . Then

$$\operatorname{proj} - \dim_S(H) = \operatorname{proj} - \dim_S(H^{p^s}) < \infty.$$

Proof. Since $H^{p^s} \subseteq H$ is a finite integral extension, S is also a system of parameters for H. Thus both projective dimensions are finite. Moreover, by the Auslander-Buchsbaum formula we have

$$\operatorname{proj} - \dim_S(\operatorname{H}^{p^s}) = \dim(\operatorname{H}^{p^s}) - \operatorname{depth}(\operatorname{H}^{p^s}) = \dim(\operatorname{H}) - \operatorname{depth}(\operatorname{H}) = \operatorname{proj} - \dim_S(\operatorname{H})$$
 by Lemma 6.2.

We come to the desired result about a Noetherian unstable algebra H and its \mathcal{P}^* -inseparable closure $\mathcal{P}^*\sqrt{H}$.

Proposition 6.4. Let H be Noetherian and reduced of Krull dimension n. Then H is Cohen-Macaulay if and only if $\sqrt[p^*]{H}$ is Cohen-Macaulay.

Proof. Since H is Noetherian, its \mathcal{P}^* -inseparable closure is also Noetherian by Theorem 6.1.3 in [3]. Therefore $\sqrt[p^*]{H} = H_s$ for some $s \in \mathbb{N}_0$. Thus

$$(\sqrt[p^*]{H})^{p^s} \hookrightarrow H \hookrightarrow \sqrt[p^*]{H} = H_s$$

is a finite integral extension. By Lemma 6.1 we have a bijection

$$\mathfrak{P}roj_{\mathfrak{P}^*}(\sqrt[\mathfrak{P}^*]{H})^{p^s} \to \mathfrak{P}roj_{\mathfrak{P}^*}(\sqrt[\mathfrak{P}^*]{H}).$$

By Theorem 4.3.1 in [3] and Lemma 6.1

$$\mathfrak{P}\mathit{roj}_{\mathbb{P}^*}(\sqrt[\mathbb{P}^*]{\overline{H}})^{p^s} \to \mathfrak{P}\mathit{roj}_{\mathbb{P}^*}(H) \to \mathfrak{P}\mathit{roj}_{\mathbb{P}^*}(\sqrt[\mathbb{P}^*]{\overline{H}})$$

is also bijective. Moreover, by Lemma 6.2, the left and the right algebra have the same depth. Thus by Theorem 2.1 in [5] the results follows (cf. Corollary 2.2 loc.cit.).

7. Polynomial rings

Let H be an integrally closed unstable Noetherian integral domain over the Steenrod algebra. By Theorem 5.2 we have

$$\mathbf{H} = (\overline{\mathbf{H}}^{sep})^G \hookrightarrow \sqrt[\mathfrak{P}^*]{\mathbf{H}} = \mathbb{F}[V]^G,$$

where

$$\overline{\mathbf{H}}^{sep} = \mathbb{F}[W_0] \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e}$$

for some vector space decomposition $V = W_0 \oplus \cdots \oplus W_e$. By Proposition 6.4 we know that H is Cohen-Macaulay if and only if $\sqrt[p^*]{H}$ is polynomial. Moreover, the algebra generators of H are just suitable p^s th powers of the algebra generators of $\sqrt[p^*]{H}$ (for a minimal generating set).

Let G act on $V = W_0 \oplus \cdots \oplus W_e$ such that

$$gw_i \in W_0 \oplus \cdots \oplus W_i$$

for all $w_i \in W_i$, i.e., G consists of flag matrices of the form

$$\begin{bmatrix} A_0 & 0 & \dots & 0 \\ * & A_1 & 0 & \dots & 0 \\ & * & \ddots & & \vdots \\ \dots & & \ddots & & 0 \\ * & \dots & * & A_e \end{bmatrix}$$

where A_i is an $m_i \times m_i$ -matrix with $m_i = \dim(W_i)$. For every $i = 0, \dots, e$ we have a group epimorphism

$$\operatorname{pr}_{i} \colon G \to G_{i}, \begin{bmatrix} A_{0} & 0 & & \dots & 0 \\ * & A_{1} & 0 & \dots & 0 \\ & * & \ddots & & \vdots \\ \dots & & \ddots & & 0 \\ * & & \dots & * & A_{e} \end{bmatrix} \mapsto \begin{bmatrix} A_{0} & 0 & & \dots & 0 \\ * & A_{1} & 0 & \dots & 0 \\ & * & \ddots & & \vdots \\ \dots & & \ddots & & 0 \\ * & & \dots & * & A_{i} \end{bmatrix}.$$

Lemma 7.1. With the preceding notation we have

$$\mathbb{F}[W_0 \oplus \cdots \oplus W_i]^{G_i} = \mathbb{F}[V]^G \cap \mathbb{F}[W_0 \oplus \cdots \oplus W_i] \subseteq \mathbb{F}[V]^G.$$

Proof. The kernel of the projection pr_i , $ker(pr_i)$, consists of matrices of the form

$$\begin{bmatrix} I_0 & 0 & & & \dots & 0 \\ 0 & \ddots & & & & 0 \\ \vdots & & I_i & 0 & \dots & 0 \\ * & * & * & A_{i+1} & & \vdots \\ & & & * & \ddots & \\ * & & \dots & * & A_e \end{bmatrix},$$

where the I_j 's are identity matrices. Thus $\mathbb{F}[V]^{\ker(\mathrm{pr}_i)} \supseteq \mathbb{F}[W_0 \oplus \cdots \oplus W_i]$, and hence

$$\mathbb{F}[V]^G = (\mathbb{F}[V]^{\ker(\mathrm{pr}_i)})^{G_i} \supseteq \mathbb{F}[W_0 \oplus \cdots \oplus W_i]^{G_i}.$$

Since $\mathbb{F}[W_0 \oplus \cdots \oplus W_i]^{G_i} \subseteq \mathbb{F}[W_0 \oplus \cdots \oplus W_i]$ we find

$$\mathbb{F}[W_0 \oplus \cdots \oplus W_i]^{G_i} \subseteq \mathbb{F}[V]^G \cap \mathbb{F}[W_0 \oplus \cdots \oplus W_i] \subseteq \mathbb{F}[V]^G.$$

Conversely, since $\mathbb{F}[V]^{\ker(\mathrm{pr}_i)} \supseteq \mathbb{F}[W_0 \oplus \cdots \oplus W_i]$, we have

$$\mathbb{F}[V]^{\ker(\mathrm{pr}_i)} \cap \mathbb{F}[W_0 \oplus \cdots \oplus W_i] = \mathbb{F}[W_0 \oplus \cdots \oplus W_i].$$

Thus

$$\mathbb{F}[W_0 \oplus \cdots \oplus W_i]^{G_i} = (\mathbb{F}[V]^{\ker(\mathrm{pr}_i)} \cap \mathbb{F}[W_0 \oplus \cdots \oplus W_i])^{G_i}.$$

Finally, note that

$$\mathbb{F}[V]^G \cap \mathbb{F}[W_0 \oplus \cdots \oplus W_i] \subseteq (\mathbb{F}[V]^{\ker(\mathrm{pr}_i)} \cap \mathbb{F}[W_0 \oplus \cdots \oplus W_i])^{G_i}.$$

To see this, take an element $f \in \mathbb{F}[V]^G \cap \mathbb{F}[W_0 \oplus \cdots \oplus W_i]$. Then $f \in \mathbb{F}[W_0 \oplus \cdots \oplus W_i]$ is invariant under the group G. Thus f is also invariant under $\ker(\operatorname{pr}_i)$. Therefore,

$$f \in \mathbb{F}[V]^{\ker(\mathrm{pr}_i)} \cap \mathbb{F}[W_0 \oplus \cdots \oplus W_i].$$

But f is also G-invariant, i.e.,

$$f \in (\mathbb{F}[V]^{\ker(\mathrm{pr}_i)} \cap \mathbb{F}[W_0 \oplus \cdots \oplus W_i])^G \subseteq (\mathbb{F}[V]^{\ker(\mathrm{pr}_i)} \cap \mathbb{F}[W_0 \oplus \cdots \oplus W_i])^{G_i}$$
 as desired. \square

Let $h_1, \ldots, h_m \in \mathbb{F}[V]^G$ be a minimal generating set. Without loss of generality we assume that they are sorted such that

$$h_1, \dots, h_{n_0} \in \mathbb{F}[W_0],$$

$$h_{n_0+1}, \dots, h_{n_1} \in \mathbb{F}[W_0 \oplus W_1],$$

$$\dots$$

$$h_{n_{e-1}+1}, \dots, h_{n_e} = h_m \in \mathbb{F}[W_0 \oplus \dots \oplus W_e].$$

We assume that n_0, \ldots, n_e are maximal with this property. Thus by construction

$$\mathbb{F}[h_0,\ldots,h_{n_i}] \subseteq \mathbb{F}[W_0 \oplus \cdots \oplus W_i]^{G_i} \subseteq \mathbb{F}[V]^G$$

for all $i = 0, \ldots, e$.

Proposition 7.2. If $n_e = \dim_{\mathbb{F}}(V)$, i.e., if the ring of invariants

$$\mathbb{F}[W_0 \oplus \cdots \oplus W_e]^G$$

is polynomial, then $n_i = \dim_{\mathbb{F}}(W_0 \oplus \cdots \oplus W_i)$.

Proof. Consider the integral extension

$$\mathbb{F}[W_0 \oplus \cdots \oplus W_i]^{G_i} \hookrightarrow \mathbb{F}[W_0 \oplus \cdots \oplus W_i].$$

The maximal ideal \mathfrak{m}_i of $\mathbb{F}[W_0 \oplus \cdots \oplus W_i]$ lies over the maximal ideal in $\mathbb{F}[W_0 \oplus \cdots \oplus W_i]^{G_i}$. Furthermore, \mathfrak{m}_i extends to a prime ideal $\mathfrak{p}_i \subseteq \mathbb{F}[W_0 \oplus \cdots \oplus W_e]$. By construction \mathfrak{p}_i is generated by all linear forms in $\mathbb{F}[W_0 \oplus \cdots \oplus W_i]$. Thus \mathfrak{p}_i is regular and prime of height equal to $\dim_{\mathbb{F}}(W_0 \oplus \cdots \oplus W_i)$. Hence, its contraction to the ring of invariants

$$\mathfrak{p}_i^c = \mathfrak{p}_i \cap \mathbb{F}[W_0 \oplus \cdots \oplus W_e]^G$$

is also prime of height equal to $\dim_{\mathbb{F}}(W_0 \oplus \cdots \oplus W_i)$. Furthermore, \mathfrak{p}_i^c contains by construction

$$(h_1,\ldots,h_{n_i})\subseteq \mathfrak{p}_i^c$$
.

Thus the quotient

$$\mathbb{F}[W_0 \oplus \cdots \oplus W_e]^G/\mathfrak{p}^c = \mathbb{F}[\overline{h}_{n_i+1}, \ldots, \overline{h}_n] \hookrightarrow \mathbb{F}[W_{i+1} \oplus \cdots \oplus W_e]$$

is integral, and

$$n - n_i = \dim_{\mathbb{F}}(W_{i+1} \oplus \cdots \oplus W_e)$$

for all i = 0, ..., e - 1.

Theorem 7.3. With the above notation, if

$$(\mathbb{F}[W_0] \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e})^G = \mathbb{F}[h_1, \dots, h_n]$$

is polynomial, then for suitable $s_1, \ldots, s_n \in \mathbb{N}_0$

$$(\mathbb{F}[U_0] \otimes \cdots \otimes \mathbb{F}[U_f]^{p^f})^G = \mathbb{F}[h_1^{p^{s_1}}, \dots, h_n^{p^{s_n}}]$$

is polynomial for any subflag

$$U_0 \oplus \cdots \oplus U_i \leq W_0 \oplus \cdots \oplus W_i$$

that admits an action of G.

Proof. To simplify notation we assume that the extension

$$\mathbb{F}[U_0] \otimes \cdots \otimes \mathbb{F}[U_f]^{p^f} \hookrightarrow \mathbb{F}[W_0] \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e}$$

is purely inseparable of exponent one. The general case follows then inductively.

Since G acts on the flag $W_0 \oplus \cdots \oplus W_e$ the algebra generator for the ring of invariants can be sorted such that

$$h_1, \ldots, h_{n_i} \in \mathbb{F}[W_0 \oplus \cdots \oplus W_i]$$

with $n_i - n_{i-1} = \dim(W_i)$, $n_0 = \dim_{\mathbb{F}}(W_0)$, by Proposition 7.2.

Since G acts also on the subflag $U_0 \oplus \cdots \oplus U_f$ the algebra generator for the ring of invariants can be sorted such that

$$h_1, \ldots, h_{m_i} \in \mathbb{F}[U_0 \oplus \cdots \oplus U_i]$$

with $m_i - m_{i-1} = \dim(U_i)$, $m_0 = \dim_{\mathbb{F}}(U_0)$, and $m_f = n_e = n$. Thus $n_i \geq m_i$. Consider the algebra

$$\mathbf{A} = \mathbb{F}[h_1, \dots, h_{m_0}, h_{m_0+1}^p, \dots, h_{n_0}^p, h_{n_0+1}, \dots, h_{m_1}, h_{m_1+1}^p, \dots, h_{n_1}^p, \dots, h_{m_e}, h_{m_e+1}^p, \dots, h_{m_f}^p]$$

$$\hookrightarrow \mathbb{F}[U_0] \otimes \dots \otimes \mathbb{F}[U_f]^{p^f}.$$

Since A consists of invariant polynomials it is contained in the ring of invariants

$$(\mathbb{F}[U_0] \otimes \cdots \otimes \mathbb{F}[U_f]^{p^f})^G$$
.

The diagram

has by construction purely inseparable vertical extensions of degree $p^{\sum_i (n_i - m_i)}$. Since the degree of

$$\mathbb{F}[h_1,\ldots,h_n] \hookrightarrow \mathbb{F}[W_0] \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e}$$

is the group order |G|, the degree of

$$A \hookrightarrow \mathbb{F}[U_0] \otimes \cdots \otimes \mathbb{F}[U_f]^{p^f}$$

is also the group order. Thus A is the desired ring of invariants as claimed. $\hfill\Box$

The following result settles a twenty-year-old conjecture due to Clarence W. Wilkerson (see Conjecture 5.1 in [8]).

Theorem 7.4. Let H be an integrally closed Noetherian unstable integral domain over the Steenrod algebra. Then H is polynomial if and only if $\sqrt[p^*]{H}$ is polynomial. Furthermore,

$$\sqrt[p^*]{\mathbf{H}} = \mathbb{F}[h_1, \dots, h_n]$$

if and only if there are $s_1, \ldots, s_n \in \mathbb{N}_0$ such that

$$\mathbf{H} = \mathbb{F}[h_1^{p^{s_1}}, \dots, h_n^{p^n}].$$

Proof. By Theorem 5.2 there exist a group G and a flag $V=W_0\oplus\cdots\oplus W_e$ such that

$$\mathbf{H} = (\mathbb{F}[W_0] \otimes \cdots \otimes \mathbb{F}[W_e]^{p^e})^G \hookrightarrow \sqrt[p^*]{\mathbf{H}} = \mathbb{F}[V]^G.$$

If $\sqrt[p^*]{H}$ is polynomial, then so is H by Theorem 7.3. Note that the same result also gives the precise statement on the respective algebra generators.

On the other hand, $(\sqrt[p^*]{H})^{p^e} = (\mathbb{F}[V]^{p^e})^G \hookrightarrow H$ is the ring of invariants on the subflag $V \leq W_0 \oplus \cdots \oplus W_e$ for some large enough e. Therefore if H is polynomial, then $(\sqrt[p^*]{H})^{p^e} \hookrightarrow H$ is polynomial by the same Theorem 7.3. Thus $\sqrt[p^*]{H}$ is polynomial since it is isomorphic as an algebra to $(\sqrt[p^*]{H})^{p^e}$.

Thus we have the following corollary.

Corollary 7.5. Let H be an unstable polynomial algebra over the Steenrod algebra. Set $H = \mathbb{F}[h_1, \ldots, h_n]$. Then H is \mathbb{P}^* -inseparably closed if and only if the polynomial generators h_1, \ldots, h_n are no pth powers.

The example given at the end of Section 5 illustrates these results. We want to close with an example that shows that a simple generalization of Theorem 7.4 to nonpolynomial invariants is not true.

Example 7.6. Let p be odd and let \mathbb{F} be the prime field of characteristic p. Consider the four-dimensional modular representation $\mathbb{Z}/p \hookrightarrow \mathrm{GL}(4,\mathbb{F})$ afforded by the matrix

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Its ring of invariants turns out to be a hypersurface

$$\mathbb{F}[x_1, y_1, x_2, y_2]^{\mathbb{Z}/p} = \mathbb{F}[c_1, y_1, c_2, y_2, q]/(r)$$

where $c_i = x_i^p - x_i y_i^{p-1}$ are the top orbit Chern classes of x_i , i = 1, 2, and $q = x_1 y_2 - x_1 y_1$ is an invariant quadratic form. The relation is given by

$$r = q^p - c_1 y_2^p + c_2 y_1^p + q y_1^{p-1} y_2^{p-1}$$

(see Theorem 2.1 in [2]). Certainly, \mathbb{Z}/p also acts on $\mathbb{F}[x_1,y_1]\otimes \mathbb{F}[x_2^p,y_2^p]$ and we find that

$$A = \mathbb{F}[c_1, y_1, c_2^p, y_2^p, q^p] \hookrightarrow (\mathbb{F}[x_1, y_1] \otimes \mathbb{F}[x_2^p, y_2^p])^{\mathbb{Z}/p}.$$

However, the new ring of invariants contains an invariant that is not in the algebra A, namely

$$q' = x_1 y_2^p - x_2^p y_1.$$

Indeed, with the methods presented in Theorem 2.1 of [2] it is not hard to see that

$$(\mathbb{F}[x_1, y_1] \otimes \mathbb{F}[x_2^p, y2^p])^{\mathbb{Z}/p} = \mathbb{F}[c_1, y_1, c_2^p, y_2^p, q']/(r'),$$

where $r' = (q')^p - c_1 y_2^{p^2} + c_2^p y_1^p - q' y_1^{p-1} y_2^{p(p-1)}$. Interesting enough though, it transpires that this ring is again a hypersurface.

References

- Nathan Jacobson, Lecture in Abstract Algebra, Vol. III: Theory of Fields and Galois Theory,
 D. van Nostrand Company, Inc., Princeton, NJ, 1964. MR0172871 (30:3087)
- [2] Mara D. Neusel, Invariants of some Abelian p-Groups in Characteristic p, Proc. Amer. Math. Soc. 125 (1997), 1921–1931. MR1377000 (97i:13004)
- [3] Mara D. Neusel, Inverse Invariant Theory and Steenrod Operations, Memoirs Amer. Math. Soc., vol. 146, AMS, Providence, RI, 2000. MR1693799 (2000m:55023)
- [4] Mara D. Neusel, Localizations over the Steenrod Algebra. The lost Chapter, Math. Zeitschrift 235 (2000), 353–378. MR1795513 (2001m:16033)
- [5] Mara D. Neusel, Unstable Cohen-Macaulay Algebras, Mathematical Research Letters 8 (2001), 1–13. MR1839483 (2002d:13030)
- [6] Mara D. Neusel and Larry Smith, Invariant Theory of Finite Groups, Mathematical Surveys and Monographs 94, AMS, Providence, RI, 2002. MR1869812 (2002k:13012)
- [7] Clarence W. Wilkerson, Classifying Spaces, Steenrod Operations and Algebraic Closure, Topology 16 (1977), 227–337. MR0442932 (56:1307)
- [8] Clarence W. Wilkerson, Rings of Invariants and Inseparable Forms of Algebras over the Steenrod Algebra, pp. 381–396 in: Recent progress in homotopy theory (Baltimore, MD, 2001), Contemp. Math. 293, AMS, Providence, RI, 2002. MR1890745 (2003d:55020)

Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas 79409-1042

E-mail address: Mara.D.Neusel@ttu.edu